[1] Smith L H. Axial Compressor Aerodesign Evolution at General Electric[J]. ASME Journal of Turbomachinery, 2002, 124(3): 321-330.
[2] Hah C, Puterbaugh S L, Wadia A R. Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep[R]. ASME 98-GT-561.
[3] Denton J D, Xu L. The Effects of Lean and Sweep on Transonic Fan Performance[R]. ASME GT2002-30327.
[4] Denton J D, Xu L. The Exploitation of Three-Dimensional Flow in Turbomachinery Design[J]. Proceedings of the Institution of Mechanical Engineers, 1999, 213(2): 125-137.
[5] Yamaguchi N, Tominaga T, Hattori S, et al. Secondary-Loss Reduction by Forward-Skewing of Axial Compressor Rotor Blading[C]. Japan: The International Gas Turbine Congress, 1991.
[6] Passrucker H, Engber M, Kablitz S, et al. Effect of Forward Sweep in a Transonic Compressor Rotor[J]. Proceedings of the Institution of Mechanical Engineers, 2003, 217(4): 357-365.
[7] Gümmer V, Wenger U, Kau H P. Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors[J]. ASME Journal of Turbomachinery, 2001, 123(1): 40-48.
[8] Braun M, Seume J R. Forward Sweep in a Four-Stage High-Speed Axial Compressor[R]. ASME GT2006-90218.
[9] 冯秀莲, 金东海, 桂幸民. 叶片弯掠对压气机静子叶片气动性能影响的三维数值模拟[J]. 航空动力学报, 2009, 24(10): 2338-2343.
[10] 刘宝杰, 邹正平, 严 明, 等. 叶轮机计算流体动力学技术现状与发展趋势[J]. 航空学报, 2002, 23(5): 394-404.
[11] Reid L, Moore R D. Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor[R]. NASA-TP-1337, 1978.
[12] Suder K L. Experimental Investigation of the Flow Field in a Transonic, an Axial Flow Compressor with Respect to the Development of Blockage and Loss[D]. Cleveland: Case Western Reserve University, 1996.
[13] Spalart P R, Allmaras S R. A One-Equation Turbulence Model for Aerodynamic Flows[J]. Recherche Aerospatiale, 1994, 1(1): 5-21.
[14] 宁方飞, 徐力平. Spalart-Allmaras湍流模型在内流流场数值模拟中的应用[J]. 工程热物理学报, 2001, 22(3): 304-306.
[15] Jameson A, Schmidt W, Turkel E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes[C]. Palo Alto: AIAA 14th Fluid and Plasma Dynamics Conference, 1981.
[16] Subramanian S, Bozzola R. Application of Runge-Kutta Time Marching Scheme for the Computation of Transonic Flows in Turbomachines[C]. California: 21st Joint Propulsion Conference, 1987.
[17] 邱 名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2014, 35(4): 975-985.
[18] 周正贵, 邱 名, 徐 夏, 等. 压气机/风扇二维叶型自动优化设计[J]. 航空学报, 2011, 32(11): 1987-1997.
[19] 徐国华. 遗传算法的改进及风扇/压气机通用优化平台的研制[D]. 南京:南京航空航天大学, 2013.
[20] 周正贵. 压气机叶片自动优化设计[J]. 航空动力学报, 2002, 17(3): 305-308.