Investigation on Heat Transfer Augmentation in a Inner-Cooling Passage with Triangular V-Shaped and Inverse V-Shaped Ribs
1.College of Aircraft Traffic Management,Civil Aviation University of China,Tianjin 300300,China;2.Shanghai Aerospace System Engineering Institute,Shanghai 201108,China;3.College of Aeronautical Mechanics Engineering,Civil Aviation University of China,Tianjin 300300,China
LIU Cong1,WANG Zhao2,ZHANG Zong-wei3. Investigation on Heat Transfer Augmentation in a Inner-Cooling Passage with Triangular V-Shaped and Inverse V-Shaped Ribs[J]. Journal of Propulsion Technology, 2019, 40(9): 2040-2049.
[1] Han J C, Park J S. Developing Heat Transfer in Rectangular Channels with Rib Turbulators[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 183-195.
[2] Han J C, OU S, Park J S, et al. Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators[J]. International Journal of Heat and Mass Transfer, 1989, 32 (9): 1619-1630.
[3] Han J C. Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators[J]. Journal of Heat Transfer, 1988, 110 (2): 321-328.
[4] Park J S, Han J C, Huang Y, et al. Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs[J]. International Journal of Heat and Mass Transfer, 1992, 35(11): 2891-2903.
[5] Liu Y H, Wright L M, Fu W L, et al. Rib Spacing Effect on Heat Transfer in Rotating Two-Pass Ribbed Channel[J]. Journal Thermophysics and Heat Transfer, 2007, 21(3): 582-595.
[6] Smith M A, Mathison R, Dunn M G. Heat Transfer for High Aspect Ratio Rectangular Channels in a Stationary Serpentine Passage with Turbulated and Smooth Surfaces[R]. ASME GT2013-94924.
[7] Han J C, Zhang Y M, and Lee C P. Augmented Heat Transfer in Square Channels with Parallel, Crossed and V-Shaped Angled Ribs[J]. Journal of Heat Transfer, 1991, 113(4): 590-596.
[8] Han J C, Huang J J, Lee C P. Augmented Heat Transfer in Square Channels with Wedge-Shaped and Delta-Shaped Turbulence Promoters[J]. Journal of Enhanced Heat Transfer, 1993, (1): 37-52.
[9] Bhagoria J L, Saini J S, Solanki S C. Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate[J]. International Journal of Renewable Energy, 2002, 25: 341-369.
[10] Aharwal K R, Gandhi B K, Saini J S. Heat Transfer and Friction Characteristics of Solar Air Heater Ducts Having Integral Inclined Discrete Ribs on Absorber Plate[J]. International Journal of Heat and Mass Transfer, 2009, 52(25): 5970-5977.
[11] Maurer M, Von Wolfersdorf J, Gritsch M. An Experimental and Numerical Study of Heat Transfer and Pressure Loss in a Rectangular Channel with V-Shaped Ribs[R]. ASME GT2006-90006.
[12] Wright L M, Fu W L, Han J C. Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)[R]. ASME GT2004-54073.
[13] Han J C, Zhang Y M. High Performance Heat Transfer Ducts with Parallel and V-Shaped Broken Ribs[J]. International Journal of Heat and Mass Transfer, 1992, 35 (2): 513-523.
[14] Tanda G. Heat Transfer in Rectangular Channels with Transverse and V-Shaped Broken Ribs[J]. International Journal of Heat and Mass Transfer, 2004, 47: 229-243.
[15] Kan Rui, Yang Li, Ren Jing, et al. Effect of Rib Configuration and Lateral Ejection on a High Aspect Ratio Trailing Edge Channel[R]. ASME GT2013-94549.
[16] 阚 瑞, 陈 伟, 任 静, 等. 梯形带肋内部冷却通道的流动及传热特性实验[J]. 工程热物理学报, 2010, 31(5): 753-756.
[17] 陈 伟, 阚 瑞, 任 静, 等. 涡轮叶片内部冷却通道传热和压力分布特性的实验[J]. 航空动力学报, 2010, 25(12): 2780-2786.
[18] 迟重燃, 任 静, 蒋洪德. 燃机叶片平行肋扰流内冷通道传热特性研究(Part Ⅰ): 流动传热机理[J]. 工程热物理学报, 2013, 34(4): 624-627.
[19] 迟重燃, 任 静, 蒋洪德. 燃机叶片平行肋扰流内冷通道传热特性研究(Part Ⅱ): 耦合传热特性[J]. 工程热物理学报, 2014, 35(1): 42-45.
[20] 王德强, 饶 宇, 张 鹏, 等. 涡轮叶片内冷通道高性能肋流动与传热[J]. 工程热物理学报, 2018, 39(1): 55-61.
[21] 周明轩, 薛树林, 贺宜红, 等. 高阻塞比肋化通道对流换热特性实验研究[J]. 推进技术, 2018, 39(2): 335-341.
[22] 冯晓星, 田淑青, 邓宏武, 等. 高旋转数下直肋U型方通道的换热特性研究[J]. 推进技术, 2016, 37(3):428-435.
[23] 朱强华, 崔 苗, 高效伟. 肋开孔高度对大宽高比矩形通道流动传热的影响[J]. 推进技术, 2014, 35(12):1630-1638.
[24] Xie G, Liu J, Ligrani P M, et al. Numerical Analysis of Flow Structure and Heat Transfer Characteristics in Square Channels with Different Internal-Protruded Dimple Geometrics[J]. International Journal of Heat and Mass Transfer, 2013, 36(1): 81-97.
[25] Ligrani P M, Mahmood G I, Harrison J l, et al. Flow Structure and Local Nusselt Number Variations in a Channel with Dimples and Protrusions on Opposite Walls[J]. International Journal of Heat and Mass Transfer, 2001, 44(23): 4413-4425.
[26] Xie G, Sunden B, Zhang W. Comparisons of Pins/Dimples/Protrusions Cooling Concepts for a Turbine Blade Tip-Wall at High Reynolds Numbers[J]. Journal of Heat Transfer, 2011, 133(6).
[27] Chang S W, liou T M, Lee T H. Thermal Performance Comparison Between Radially Rotating Ribbed Parallelogram Channels with and Without Dimples [J]. International Journal of Heat and Mass Transfer, 2012, 55(13): 3541-3559.
[28] Choi E Y, Choi Y D, Lee W S, et al. Heat Transfer Augmentation Using a Rib-Dimple Compound Cooling Technique[J]. Applied Thermal Engineering, 2013, 51(1): 435-441.
[29] Ekkad S V, Han J. A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements[J]. Measurement Science and Technology, 2000, 11(7): 957-968.
[30] Yan Y, Owen J M. Uncertainties in Transient Heat Transfer Measurements with Liquid Crystal [J]. International Journal of Heat and Fluid Flow, 2002, 23: 29-35.