Design of Ionic Liquid Electrospray Micro-Thruster System and Preliminary Study on Its Performance
1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;2.Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
GUO Yun-tao1,LI Shi-peng1,WU Zhi-wen1,ZHU Kang-wu2,HAN Yu-ning1,SUN Zhen-ning1,WANG Ning-fei1. Design of Ionic Liquid Electrospray Micro-Thruster System and Preliminary Study on Its Performance[J]. Journal of Propulsion Technology, 2020, 41(1): 212-219.
[1] Ziemer J K, Randolph T M, Gamero-Casta?o M, et al. Flight Hardware Development of Colloid Microthruster Technology for the Space Technology 7 and LISA Missions[C]. Florence, Italy: 30th International Electric Propulsion Conference, 2007.
[2] Ziemer J, Marrese-Reading C, Dunn C, et al. Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System[C]. Atlanta, USA: 35th International Electric Propulsion Conference, 2017.
[3] Dandavino S, Ataman C, Ryan C N, et al. Microfabricated Electrospray Emitter Arrays with Integrated Extractor and Accelerator Electrodes for the Propulsion of Small Spacecraft[J]. Journal of Micromechanics & Microengineering, 2014, 24(7).
[4] 程世豪. 离子液体微型电推进器三维仿真与性能分析[D]. 南京:南京航空航天大学, 2017.
[5] 高 辉, 薛森文, 许 诺, 等. 离子液体微推进技术试验研究进展[C]. 北京:第十三届中国电推进学术研讨会, 2017.
[6] 刘欣宇, 康小明, 徐明明, 等. 阵列式离子液体电喷推力器的研制及实验特性[C]. 长沙:第十四届中国电推进学术研讨会, 2018.
[7] Krejci D, Mierhicks F, Thomas R, et al. Emission Characteristics of Passively Fed Electrospray Microthrusters with Propellant Reservoirs[J]. Journal of Spacecraft & Rockets, 2017, 54(2): 1-12.
[8] Mierhicks F, Lozano P C. Electrospray Thrusters as Precise Attitude Control Actuators for Small Satellites[J]. Journal of Guidance Control Dynamics, 2017, 40(3):1-8.
[9] Courtney D G, Shea H, Dannenmayer K, et al. Charge Neutralization and Direct Thrust Measurements from Bipolar Pairs of Ionic Electrospray Thrusters[J]. Journal of Spacecraft & Rockets, 2017, 55(1): 54-65.
[10] Grustan-Gutierrez E, Gamero-Casta?o M. Microfabricated Electrospray Thruster Array with High Hydraulic Resistance Channels[J]. Journal of Propulsion & Power, 2017, 33(4): 1-8.
[11] Alexander M S, Smith K L, Paine M D, et al. Voltage-Modulated Flow Rate for Precise Thrust Control in Colloid Electrospray Propulsion[J]. Journal of Propulsion & Power, 2007, 23(5): 1042-1048.
[12] 秦超晋. 胶质推力器数值仿真和实验研究[D]. 北京:北京航空航天大学, 2012.
[13] 郭云涛, 武志文, 刘 旺. 离子液体微型电推力器双工作模式研究[C]. 北京:第十三届中国电推进学术研讨会, 2017.
[14] Gamerocasta?o M. Characterization of the Electrosprays of 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl) Imide in Vacuum[J]. Physics of Fluids, 2008, 20(3): 69-576.
[15] Nabity J A, Daily J W. Effect of Ionic Liquid Composition on Colloid Thruster Emission and Thrust Performance[J]. Journal of Propulsion & Power, 2018, 34(1).
[16] Krpoun R, Shea H R. A Method to Determine the Onset Voltage of Single and Arrays of Electrospray Emitters[J]. Journal of Applied Physics, 2008, 104(6).
[17] Lozano P, Martínezsánchez M. Ionic Liquid Ion Sources: Suppression of Electrochemical Reactions Using Voltage Alternation. [J]. Journal of Colloid & Interface Science, 2004, 280(1): 149-154.
[18] Ma C, Ryan C N. Characterization of a Micro-Electrospray Thruster with a Porous Glass Emitter Array[C].Spain: Space Propulsion Conference, 2018.
[19] Delamora J F, Loscertales I G. Current Emitted by Highly Conducting Taylor Cones[J]. Journal of Fluid Mechanics, 1994, 260(260): 155-184.
[20] Romerosanz I, Bocanegra R, Mora J F D L, et al. Source of Heavy Molecular Ions Based on Taylor Cones of Ionic Liquids Operating in the Pure Ion Evaporation Regime[J]. Journal of Applied Physics, 2003, 94(5):3599-3605.
[21] Ryan C N, Smith K L, Stark J P W. The Flow Rate Sensitivity to Voltage Across Four Electrospray Modes[J]. Applied Physics Letters, 2014, 104(8).