[1] 陆建华, 王 京, 龚 克. 微小卫星技术发展及其应用[J]. 世界电信, 2001, (11): 8-11.
[2] 林来兴, 张小琳. 迎接“轨道革命”——微小卫星的飞速发展[J]. 航天器工程, 2016, 25(2): 97-105.
[3] 吴 尚. 太阳能热微推进系统优化设计与性能研究[D]. 长沙:国防科学技术大学, 2015.
[4] 林来兴. 现代小卫星的微推进系统[J]. 航天器工程, 2010, 19(6): 13-20.
[5] Harold P, Gerrish J. Solar Thermal Propulsion at MSFC[R]. NASA-M16-5082.
[6] Frye P E, Shoji J M. Innovative Applications of Solar Thermal Propulsion[R]. AIAA 92-3081.
[7] 张纯良, 高 芳, 张振鹏, 等. 太阳能热推进技术的研究进展[J]. 推进技术, 2004, 25(2): 187-192.
[8] Olsen A D, Cady E C, Jenkens D S. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test[R]. AIAA 99-2604.
[9] Cady E C, Olsen A D. Solar Thermal Upper Stage Technology Demonstrator Program[R]. AIAA 96-3011.
[10] Malloy J, Jacox M G, Kennedy F G. Integrated Solar Upper Stage (ISUS) Demonstration System[R]. AIAA 95-2778.
[11] 邢宝玉. 太阳热推力器结构设计与性能分析[D]. 长沙:国防科学技术大学, 2009.
[12] Etheridge F G. Solar Rocket System Concept Analysis[R]. NASA-CP-2144, E-510.
[13] Finogenov S L. Solar Thermal Propulsion Concept Featuring Phase-Change Latent Heat Storage and Subsequent Hydrogen Burning in Fluorine[J]. Series Mechanical Engineering, 2018, 3(120): 30-49.
[14] Shimizu M, Itoh K, Sato H, et al. Solar Thermal Thruster Made of Single Crystal Molybdenum[J]. Acta Astronautica, 1997, 41(1): 23-28.
[15] Shimizu M, Naito H. 50Mm Cavity Diameter Solar Thermal Thruster Made of Single Crystal Molybdenum[R]. AIAA 2001-3733.
[16] Shimizu M, Itoh K, Sato H. Very Small Solar Thermal Thruster Made of Single Crystal Tungsten for Micro/Nanosatellites[R]. AIAA 2000-3832.
[17] Kennedy F G, Palmer P L. Preliminary Design of a Micro-Scale Solar Thermal Propulsion System[R]. AIAA 2002-3928.
[18] Henshall P, Palmer P. Concentrator Pointing Control Concept for Fiber Optic Augmented Solar Thermal Propulsion Systems[J]. Journal of Spacecraft and Rockets, 2016, 53(1): 230-234.
[19] Henshall P, Palmer P. Solar Thermal Propulsion Augmented with Fiber Optics:Technology Development[R]. AIAA 2006-4874.
[20] 夏广庆, 唐金兰, 毛根旺, 等. 折射式二次聚光太阳能热推力器性能预示[J]. 固体火箭技术, 2005(02): 79-82.
[21] 戴贵龙, 夏新林, 于明跃. 多模式太阳能热推进的性能计算和分析[J]. 宇航学报, 2010, 31(6): 1631-1636.
[22] Xing B, Liu K, Huang M, et al. High Efficient Configuration Design and Simulation of Platelet Heat Exchanger in Solar Thermal Thruster[J]. Journal of Thermal Science, 2014, 23(3): 246-252.
[23] 黄敏超, 杜运良. 吸气式太阳能热推进系统进气道特性分析[J]. 国防科技大学学报, 2016, (6): 59-63.
[24] Scharfe D B, Young M P. Augmentation of Solar Thermal Propulsion Systems via Phase Change Thermal Energy Storage and Thermal Electric Conversion[C]. Bordeaux:the Space Propulsion Conference, 2012.
[25] Sedano N, Painter J, Walsh R. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion[C]. Cleveland: The 12th Annual International Energy Conversion Engineering Conference, 2014.
[26] 王任享, 尹 明. 对地观测微小卫星的发展现状及其应用[J]. 测绘通报, 1999, (12): 20-22.
[27] Gilpin M R, Scharfe D B, Young M P, et al. Molten Boron Phase-Change Thermal Energy Storage: Containment and Applicability to Microsatellites (Draft)[C]. Honolulu:The 42nd AIAA Plasmadynamics and Laser Conference, 2011.
[28] Gilpin M R, Scharfe D B, Pancotti A P. Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems[R]. AIAA 2011-5986.
[29] Gilpin M, Scharfe D, Young M. Phase-Change Thermal Energy Storage and Conversion: Development and Analysis for Solar Thermal Propulsion[R]. AIAA 2012-3715.
[30] Scharfe D, Young M. A Study of Solar Thermal Propulsion System Enhancement via Thermal Storage and Thermal-Electric Conversion[C]. Colorado Springs: The 57th JANNAF Joint Subcommittee Meeting, 2010.
[31] Chen X, Xuan Y, Han Y. Investigation on Performance of a Solar Thermophotovoltaic System[J]. Science in China Series E: Technological Sciences, 2008, 51(12): 2295-2304.
[32] Chen X, Xuan Y, Han Y. Thermal Analysis and Optimization of the Emitter in the Solar Thermophotovoltaic (STPV)[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2660-2669.
[33] 夏广庆. STP光热转换机理研究及实验系统方案设计[D]. 西安:西北工业大学, 2005.
[34] 张万权. 太阳能光热推进聚光器的设计与研究[D]. 南京:南京航空航天大学, 2009.
[35] Geng S M, Macosko R P, Geng S M, et al. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator[J]. Fuel & Energy Abstracts, 1999, 42(1): 44.
[36] 王 洋. 高性能气凝胶隔热材料研究进展[J]. 飞航导弹, 2014, (3): 90-94.
[37] 吴晓栋, 崔 升, 王 岭, 等. 耐高温气凝胶隔热材料的研究进展[J]. 材料导报, 2015, (9): 102-108.
[38] Johnson W L, Demko J A, Fesmire J E. Analysis and Testing of Multilayer and Aerogel Insulation Configurations[C]. Tucson (Arizona):AIP Conference Proceedings, 2010.
[39] 马丙辉, 卢泽生. 热管等效热导率的研究[C]. 威海:全国热管会议, 2008.
[40] 张纯良, 张振鹏, 魏志明. 太阳能火箭发动机聚光器设计方法[J]. 航空动力学报, 2004, 19(4): 557-561.
[41] Soules J A, Buchele D R, Castle C H, et al. Design and Fabrication of a Dielectric Total Internal Reflecting Concentrator and Associated Flux Extractor for Extremely High-Temperature (2500K) Applications[R]. NASA-CR-204145.
[42] 马沛生, 江碧云, 张建侯. 气体常压粘度数据的评定和对温度的关联[J]. 化工学报, 1981, 32(3): 193-205.
[43] 刘晨宇, 徐用军, 姜兆华, 等. 高发射率涂层研究的进展[J]. 节能技术, 2013, (4): 307-309.
[44] 杨贤荣, 马庆芳, 原庚新, 等. 辐射换热角系数手册[M]. 北京:国防工业出版社, 1982.
[45] Hall C A, Glakpe E K, Cannon J N, et al. Thermodynamic Analysis of Space Solar Dynamic Heat Receivers with Cyclic Phase Change[J]. Journal of Solar Energy Engineering, 1999, 121: 133-144.
[46] 禹秉熙, 方 伟, 姚海顺, 等. 神舟3号飞船上太阳辐射测量[J]. 空间科学学报, 2004, 24(2): 119-123.
[47] 喻巍岭, 冯煜东, 周 晖, 等. 微型拉瓦尔喷管的流体仿真分析和优化[J]. 真空与低温, 2018, 24(4): 246-250.
[48] 王光林, 蔡 峨. 固体火箭发动机设计[M]. 西安: 西北工业大学出版社, 1994.
[49] 王克印, 韩星星, 张晓涛, 等. 缩扩型超音速喷管的设计与仿真[J]. 中国工程机械学报, 2011, (3): 304-308.
[50] Zakharchenko R. Photovoltaic Solar Panel for a Hybrid PV/Thermal System[J]. Solar Energy Materials and Solar Cells, 2004, 82(1-2): 253-261.
[51] 张忠卫, 陆剑峰, 池卫英, 等. 砷化镓太阳电池技术的进展与前景[J]. 上海航天, 2003, (3): 33-38.
[52] 李军予, 伍保峰, 张晓敏. 立方体纳卫星的发展及其启示[J]. 航天器工程, 2012, (3): 80-87.
[53] 武晓松, 王政时, 季宗德. 火箭喷管内三维非对称流场的数值模拟研究[J]. 推进技术, 1997, 18(2): 6-10. (WU Xiao-song, WANG Zheng-shi, JI Zong-de. Numerical Simulation of Three-Dimensional Non-Symmetrical Flow in Rocket Nozzles[J]. Journal of Propulsion Technology, 1997, 18(2): 6-10.)
[54] 毛根旺, 韩先伟, 杨 涓, 等. 电推进研究的技术状态和发展前景[J]. 推进技术, 2000, 21(5): 1-5.
[55] 毛根旺. GSO卫星先进推进系统的现状与发展[J]. 推进技术, 1999, 20(1): 104-108. (MAO Gen-wang. Present Condition and Development of Advanced Propulsion Systems on GSO Satellites[J]. Journal of Propulsion Technology, 1999, 20(1): 104-108.)