Uncertainty Quantification of Vacuum Plume Simulations Using Direct Simulation Monte Carlo Method
1.College of Aeronautics and Astronautics,Shanghai Jiaotong University,Shanghai 200240,China;2.Beijing Institute of Control Engineering,Beijing 100190,China
CHEN Hao1,LIN Zhen2,LIU Cheng-cheng1,ZHANG Bin1,LIU Hong1. Uncertainty Quantification of Vacuum Plume Simulations Using Direct Simulation Monte Carlo Method[J]. Journal of Propulsion Technology, 2020, 41(1): 73-84.
[1] 陈 兵, 蔡国飙. 模拟真空羽流场的特征线法[J]. 推进技术, 2002, 23(6): 500-504. (CHEN Bing, CAI Guo-biao. Method of Characteristics for Vacuum Plume Simulation[J]. Journal of Propulsion Technology, 2002, 23(6): 500-504.)
[2] 唐振宇, 贺碧蛟, 蔡国飙. 解耦N-S/DSMC方法计算推力器真空羽流的边界条件研究[J]. 推进技术, 2014, 35(7): 897-904. (TANG Zhen-yu, HE Bi-jiao, CAI Guo-biao. Investigation on Boundary Conditions in Decoupled N-S/DSMC Method for Vacuum Plume Simulation of Thrusters[J]. Journal of Propulsion Technology, 2014, 35(7): 897-904.)
[3] 王黎珍, 史纪鑫, 郑世贵. 推力器真空羽流热效应计算模型修正及误差分析[J]. 航天器环境工程, 2014, 31(5): 483-488.
[4] 贺卫东, 党海燕, 许明艳, 等. 地外天体起飞过程真空羽流导流力热效应研究[J]. 推进技术, 2015, 36(8): 1151-1156.
[5] 严 立, 王平阳, 欧阳华. 月面环境发动机羽流冲击力效应模拟计算[J]. 上海交通大学学报, 2012, 46(8): 1310-1314.
[6] 蔡国飙, 王慧玉, 庄逢甘. 真空羽流的数值模拟及真空羽流污染的数值模拟分析研究[J]. 宇航学报, 1998, 19(3): 1-9.
[7] 肖泽娟. 空间发动机羽流及其污染研究[D]. 上海:上海交通大学, 2007.
[8] 贺卫东. 发动机真空羽流导流力热效应的CFD/DSMC耦合仿真及试验研究[D]. 北京:北京理工大学, 2015.
[9] 张 熇, 蔡国飙, 许映乔, 等. 嫦娥三号着陆器软着陆过程中羽流仿真分析及试验研究[J]. 中国科学:技术科学, 2014, 44(4): 344-352.
[10] 任军学, 王 艳, 仇 钎, 等. 离子发动机羽流二维轴对称数值模型与验证[J]. 北京航空航天大学学报, 2011, 37(12): 1498-1503.
[11] Crespo L G, Kenny S P, Giesy D P. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[C]. Reston, Virginia:16th AIAA Non-Deterministic Approaches Conference, 2014.
[12] Wang H, Sheen D A. Combustion Kinetic Model Uncertainty Quantification Propagation and Minimization[J]. Progress in Energy and Combustion Science, 2015, 47: 1-31.
[13] Yousefian S, Bourque G, Monaghan R D. Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems[C]. Charlotte, North Carolina:ASME Turbo Expo 2017:Turbo machinery Technical Conference and Exposition, 2017.
[14] Beran P, Stanford B, Schrock C. Uncertainty Quantification in Aeroelasticity[J]. Annual Review of Fluid Mechanics, 2017, 49: 361-386.
[15] Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows(Oxford Engineering Science Series)[M]. UK: Oxford University Press Inc., 1994.
[16] Kulakhmetov M, Alexeenko A A. Modeling Uncertainties in Direct Simulation Monte Carlo Calculations of Hypersonic Leading-Edge Flow[J]. Journal of Spacecraft and Rockets, 2012, 49(3): 461-472.
[17] Burt JM, Josyula E. Global Sensitivity Analysis and Uncertainty Quantification for a Hypersonic Shock Interaction Flow[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(3): 439-449.
[18] Strand J S, Goldstein D B. Global Sensitivity Analysis for DSMC Simulations of Hypersonic Shocks[J]. Journal of Computational Physics, 2013, 246: 184-206.
[19] Xiu D, Hesthaven J S. High-Order Collocation Methods for Differential Equations with Random Inputs[J]. SIAM Journal on Scientific Company, 2015, 27: 1118-1139.
[20] Bungartz H, Griebel M. Sparse Grids[J]. Acta Numerica, 2004, 13: 147-269.
[21] Lin L Y, Ren W, Zhang B. Improved Vertex Weight for Parallelization of DSMC in the Near-Continuum Regimes[J]. Journal of Aeronautics, Astronautics and Aviation, 2014, 46(2): 88-95.
[22] Ren W, Liu H, Jin S. An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation[J]. Journal of Computational Physics, 2014, 276: 380-404.
[23] Zhang B, Chen H, Li L Y, et al. Asymptotic-Preserving Monte Carlo Method for Large Cylinder Hypersonic Flows[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1): 205-215.
[24] Chen H, Zhang B, Liu H. Non-Rankine-Hugoniot Shock Zone of Mach Reflection in Hypersonic Rarefied Flows[J]. Journal of Spacecraft and Rockets, 2016, 53(4): 619-628.
[25] Zhang B, Li L Y, Mi Y X. Rarefaction Effect on the Aerodynamic Performance of Scramjet Inlet in Hypersonic Flow[J]. Journal of Aeronautics, Astronautics and Aviation, 2015, 47(4): 357-362.
[26] 陈 浩, 李林颖, 张 斌, 等. Q-K模型在氮氧离解复合反应中的评估[J]. 空气动力学学报, 2018, 36(1): 17-21.
[27] Chen H, Li L Y, Liu C C, et al. Uncertainty Quantification of the Surface Properties in Hypersonic Rarefied Cylinder Flows[C]. Glasgow, UK:31st International Symposium on Rarefied Gas Dynamics, 2018.
[28] 刘成诚, 李林颖, 余 彬, 等. 来流速度不确定度对超声速混合层流场特性影响研究[C]. 北京:第十八届全国激波与激波管学术会议, 2018.
[29] Judd K L, Maliar L, Maliar S, et al. Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain[J]. Journal of Economic Dynamics and Control, 2014, 44: 92-123.
[30] Sudret B. Global Sensitivity Analysis Using Polynomial Chaos Expansions[J]. Reliability Engineering & System Safety, 2008, 93: 946-979.