ZHAO Shu-fan, LI Ben-wei, QIAN Ren-jun, ZHU Fei-xiang. Turbofan Engine Model Identification of Acceleration Process Based on Particle Swarm Optimization Kernel Extreme Learning Machine[J]. Journal of Propulsion Technology, 2020, 41(10): 2358-2366.
[1] Liu Y, Litt J S, Guo T H. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance[C]. San Jose: AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.
[2] 陈玉春, 刘振德, 袁 宁, 等. 一种涡轮发动机加速控制规律设计的新方法[J]. 航空学报, 2008, 29(2).
[3] Litt J S, Frederick D K, Guo T H. The Case for Intelligent Propulsion Control for Fast Engine Response[R]. NASA/TM 2009-215668.
[4] Zheng Q, Zhang H. A Global Optimization Control for Turbo-Fan Engine Acceleration Schedule Design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
[5] Garg S. Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics Research Mission Programs[C]. Nashville: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011.
[6] Csank J, Litt J S, Guo T H. Control Design for a Generic Commercial Aircraft Engine[C]. Nashville: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010.
[7] Garg S. Propulsion Controls and Health Management Research at NASA Glenn Research Center[R]. NASA/TM 2002-211590.
[8] Zheng Q, Miao L, Zhang H, et al. On-Board Real-Time Optimization Control for Turbofan Engine Thrust under Flight Emergency Condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(11): 554-566.
[9] Mcglynn G E, Litt J S, Lemon K A, et al. A Risk Management Architecture for Emergency Integrated Aircraft Control[R]. NASA/TM, 2011-217143.
[10] Sun F, Miao L, Zhang H. A Study on the Installed Performance Seeking Control for Aero-Propulsion under Supersonic State[J]. International Journal of Turbo & Jet-Engines, 2016, 33(4): 341-351.
[11] Hussain S, Mokhtar M, Howe J M. Sensor Failure Detection, Identification, and Accommodation using Fully Connected Cascade Neural Network[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1683-1692.
[12] Vloponi A, Simon D L. Enhanced Self Tuning On-Board Realtime Model (Estorm) for Aircraft Engine Performance Health Tracking[R]. NASA/CR 2008-215272.
[13] Asgari H, Venturini M, Chen X Q, et al. Modeling and Simulation of the Transient Behavior of an Industrial Power Plant Gas Turbine[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6).
[14] Asgari H, Jegarkandi M F, Chen X Q, et al. Design of Conventional and Neural Network Based Controllers for a Single-Shaft Gas Turbine[J]. Aircraft Engineering and Aerospace Technology, 2015, 89(1): 52-65.
[15] Asgari H, Chen X Q, Menhaj M B, et al. Artificial Neural Network-Based System Identification for a Single-Shaft Gas Turbine[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(9).
[16] 尉询楷, 李应红, 王剑影, 等. 基于支持向量机的航空发动机辨识模型[J]. 航空动力学报, 2004, 19(5): 684-688.
[17] 王海涛, 谢寿生, 武 卫, 等. 基于稀疏最小二乘支持向量机的航空发动机动态过程辨识[J]. 航空动力学报, 2010, 25(9).
[18] 潘鹏飞, 马明明, 许艳芝. 飞行试验数据驱动的涡扇发动机模型辨识[J]. 燃气涡轮试验与研究, 2016, 29(6): 21-25.
[19] Zheng Q, Zhang H, Li Y, et al. Aero-Engine On-Board Dynamic Adaptive MGD Neural Network Model Within a Large Flight Envelope[J]. IEEE Access, 2018, 6: 45755 -45761.
[20] 赵姝帆, 李本威, 宋汉强, 等. 基于K-均值聚类与粒子群核极限学习机的推力估计器设计[J]. 推进技术, 2019, 40(2): 259-266.
[21] Gu B, Sheng V S, Wang Z, et al. Incremental Learning for v-Support Vector Regression[J]. Neural Networks, 2015, 67: 140-150.
[22] Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70(3): 489-501.
[23] Deng C W, Huang G B, Xu J, et al. Extreme Learning Machines: New Trends and Applications[J]. Science China Information Sciences, 2015, 58(2): 1-16.
[24] Pei F, Chen X Z, Zhu Y L, et al. Transformer Fault Diagnosis Based on Particle Swarm Optimization and Kernel-Based Extreme Learning Machine[J]. Computer Engineering and Design, 2015, 36(5): 1327-1331.
[25] Huang G B, Bai Z, Kasun L L C, et al. Local Receptive Fields Based Extreme Learning Machine[J]. IEEE Computational Intelligence Magazine, 2015, 10(2): 18-29.
[26] Huang G B, Wang D H, Lan Y. Extreme Learning Machines: A Survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[27] Li K, Lei S, Wu J J, et al. A Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and an Improved Kernel Extreme Learning Machine[J]. Applied Science, 2017, 7(10).
[28] Chao P, Jia Y, Shukai D, et al. Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM Model[J]. Sensors, 2016, 16(4): 520-535.
[29] Sun H, Yang J, Wang L. Resistance Spot Welding Quality Identification with Particle Swarm Optimization and a Kernel Extreme Learning Machine Model[J]. International Journal of Advanced Manufacturing Technology, 2016, 91(5): 1-9.
[30] Lu H, Du B, Liu J, et al. A Kernel Extreme Learning Machine Algorithm Based on Improved Particle Swam Optimization[J]. Memetic Computing, 2016, 9(2): 1-8.
[31] Zangmolk B R, Khaledi H. Development of an Interactive Code for Design and Off-Design Performance Evaluation of Gas Turbines[C]. Orlando: ASME Turbo Expo 2009: Power for Land, Sea, and Air, 2009.
[32] Asgari H, Chen X Q, Morini M, et al. NARX Models for Simulation of the Start-Up Operation of a Single-Shaft Gas Turbine[J]. Applied Thermal Engineering, 2015, 93: 368-376.