LI Chen1,2,3, SUN Pei-ting1. Effects of Flap Geometry Parameters on Propulsion Characteristics of Two-Elements Wingsail at Low Reynolds Number[J]. Journal of Propulsion Technology, 2020, 41(11): 2613-2622.
[1] 郑 鑫. 双尾襟翼帆的设计及其气动特性研究[D]. 镇江: 江苏科技大学, 2017.
[2] 王 迪. 风翼柴油机混合动力船舶运动控制研究[D]. 大连: 大连海事大学, 2018.
[3] Widnall, Sheila, Hayden C, et al. Effects of Spanwise Flexibility on Lift and Rolling Moment of a Wingsail[EB/OL]. http://hdl.handle.net/1721.1/92344, 2014-07-06.
[4] 王献孚, 黄锦文, 潘卫明. 可控环量船用翼的数值模拟和试验研究[J]. 水动力学研究与进展. 1992, 7(1): 36-41.
[5] Seifert A, Bachar T, Koss D, et al. Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation[J]. AIAA Journal, 1993, 31(11): 2052-2060.
[6] Seifert A, Darabi A, Wygnanski I. Delay of Airfoil Stall by Periodic Excitation[J]. Journal of Aircraft, 1996, 33(4): 691-698.
[7] Dalija M, Branko K. Wing Sails for Hybrid Propulsion of a Ship[J]. Journal of Sustainable Development of Energy Water and Environment Systems, 2016, 4(1): 1-13.
[8] Marine B. E-Ship1 with Sailing Rotors to Reduce Fuel Costs and to Reduce Emissions[EB/OL]. https://www.marinebuzz.com, 2008-09-16.
[9] Borglund D, Kuttenkeuler J. Active Wing Flutter Suppression Using a Trailing Flap[J]. Journal of Fluids and Structures, 2002, 16(3): 271-294.
[10] 林煜翔. 风力助航船舶襟翼帆的设计研究[D]. 大连: 大连海事大学, 2013.
[11] Burden A, Hearn G E, Lloyd T, et al. Fast Sail Assisted Feeder Container Ship[EB/OL]. https://www.researchgate.net/publication/277728973, 2010-05-07.
[12] Li Qiao, Niheia Y, Nakashima T, et a1. A Study on the Performance of Cascade Hard Sails and Sail-Equipped Vessels[J]. Ocean Engineering, 2015, 98(4): 23-31.
[13] Fish F E, Battle J M, Hydrodynamic Design of the Humpback Whale Flipper[J]. Journal of Morphology, 1995, 225 (1): 51–60.
[14] Blakeley A W, Flay R G J, Richards P J. Design and Optimisation of Multi-Element Wing Sails for Multihull Yachts[C]. Australia: 18th Australasian Fluid Mechanics Conference, 2012.
[15] Daniel W A. The CFD Assisted Design and Experimental Testing of a Wingsail with High Lift Devices[D]. England: University of Salford, 1996.
[16] Fujiwara T, Hirata K, Ueno M, et al. On Aerodynamic Characteristics of a Hybrid-Sail with Square Soft Sail[C]. Honolulu: Proceedings of the International Offshore and Polar Engineering Conference, 2003.
[17] Fujiwara T, Hirata K, Ueno M, et al. On the Development of High-Performance Sails for an Ocean-Going Sailing Ship[C]. Kanazawa: Proceedings of the International Conference on Marine Simulation and Ship Manoeuvrability, 2003.
[18] Vincent C, Nicolas G, Nicolas V. Aerodynamic Study of a Two-Elements Wingsail for High Performance Multihull Yachts[C]. Auckland: 5th High Performance Yacht Design Conference, 2015.
[19] Alessandro F, Nicolas G, Vincent C. Numerical and Experimental Analysis of the Flow Around a Two-Element Wingsail at Reynolds Number 0.53×106[J]. International Journal of Heat and Fluid Flow, 2016, 62(12): 538-551.
[20] 王宏明, 吴桂涛, 杨昺崧. 基于 CFD 的风帆助航技术效能分析[J]. 中国造船, 2011, 52(2): 25-33.
[21] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[22] Hassan G E, Hassan A, Youssef M E. Numerical Investigation of Medium Range Re Number Aerodynamics Characteristics for NACA0018 Airfoil[J]. CFD Letters, 2014, 6(4): 175-187.
[23] Malan P, Suluksna K, Juntasaro E. Calibrating the γ-Re-θ Transition Model for Commercial CFD[C]. Japan: 47th AIAA Aerospace Science Meeting, 2009.
[24] Douvi C E, Tsavalos I A, Margaris P D. Evaluation of the Turbulence Models for the Simulation of the Flow Over a National Advisory Committee for Aeronautics (NACA) 0012 Airfoil[J]. Journal of Mechanical and Industrial Engineering Research, 2012, 4(3): 100-111.
[25] Abhijit H S. Design, Analysis and Development of a Morphable Wing Structure for Unmanned Aerial Vehicle Performance Augmentation[D]. USA: University of Texas at Arlington in Partial Fulfillment, 1971.