[1] 王 闰. 船舶污染对海洋环境的影响及防治对策分析[J]. 中国水运, 2018, 18(9).
[2] 刘子杨, 翁方龙, 李玉生, 等. 燃料电池技术在船舶电力推进系统中的应用分析[J]. 船电技术, 2019, 39(11): 6-11.
[3] Han J G, Charpentier J F, Tang T H. An Energy Management System of a Fuel Cell/Battery Hybrid Boat[J]. Energies, 2014, 7(5).
[4] Weng F B, Dlamini M M, Jung G B, et al. Analyses of Reversible Solid Oxide Cells Porosity Effects on Temperature Reduction[J]. International Journal of Hydrogen Energy, 2020, 45(21).
[5] 罗启芳. 目前燃料电池的技术水平、发展趋势和用于舰船电力推进的可能性[J]. 舰船科学技术, 1980, (10): 24-36.
[6] 王建飞. 基于燃料电池的船舶推进监控系统[J]. 微计算机信息, 2006, 22(12).
[7] Jin X F, Xue X J. Mathematical Modeling Analysis of Regenerative Solid Oxide Fuel Cells in Switching Mode Conditions[J]. Journal of Power Sources, 2010, 195(19).
[8] Kazempoor P, Braun R J. Model Validation and Performance Analysis of Regenerative Solid Oxide Cells: Electrolytic Operation[J]. International Journal of Hydrogen Energy, 2014, 39(6).
[9] Su A, Ferng Y M, Wang C B. Investigating Parametric Effects on Performance of a High-Temperature URSOFC[J]. International Journal of Energy Research, 2015, 39(5).
[10] Garcia Camprubi M, Izquierdo S, Fueyo N. Challenges in the Electrochemical Modelling of Solid Oxide Fuel and Electrolyser Cells[J]. Renewable & Sustainable Energy Reviews, 2014, 33(2): 701-718.
[11] Luo Y, Shi Y, Zheng Y, et al. Reversible Solid Oxide Fuel Cell for Natural Gas/Renewable Hybrid Power Generation Systems[J]. Journal of Power Sources, 2017, 340: 60-70.
[12] Jin X, Xue X. Mathematical Modeling Analysis of Regenerative Solid Oxide Fuel Cells in Switching Mode Conditions[J]. Journal of Power Sources, 2010, 195(19).
[13] Jin X, Zhao X, Huang K. A High-Fidelity Multiphysics Model for the New Solid Oxide Iron-Air Redox Battery Part I: Bridging Mass Transport and Charge Transfer with Redox Cycle Kinetics[J]. Journal of Power Sources, 2015, 280: 195-204.
[14] Hosseini S, Vijay P, Ahmed K, et al. Dynamic Tank in Series Modeling of Direct Internal Reforming SOFC[J]. International Journal of Energy Research, 2017, 41(11).
[15] Kaya M F, Demir N. Numerical Investigation of PEM Water Electrolysis Performance for Different Oxygen Evolution Electrocatalysts[J]. Fuel Cells, 2017, 17(1): 37-47.
[16] Graves C, Ebbesen S D, Jensen S H, et al. Eliminating Degradation in Solid Oxide Electrochemical Cells by Reversible Operation[J]. Nature Materials, 2015, 14(2): 239-244.
[17] Wang C, Chen M, Liu M, et al. Dynamic Modeling and Parameter Analysis Study on Reversible Solid Oxide Cells during Mode Switching Transient Processes[J]. Applied Energy, 2020, 263(42): 386-474.
[18] Yu J G, Wang Y Z, Weng S L. Numerical Analysis of the Possibility of Carbon Formation in Planar SOFC Fueled with Syngas[J]. Journal of Fuel Cell Science and Technology, 2012, 9(2).
[19] Xu H R, Chen B, Ni M. Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes[J]. Journal of the Electrochem Society, 2016, 163(11).
[20] Ni M, Leung M K H, Leung D Y. Theoretical Analysis of Reversible Solid Oxide Fuel Cell Based on Proton-Conducting Electrolyte[J]. Journal of Power Sources, 2008, 177(2): 369-375.
[21] Li W, Shi Y, Luo Y, et al. Elementary Reaction Modeling of Solid Oxide Electrolysis Cells: Main Zones for Heterogeneous Chemical/Electrochemical Reactions[J]. Journal of Power Sources, 2015, 273: 1-13.
[22] Hauck M, Herrmann S, Spliethoff H. Simulation of a Reversible SOFC with Aspen Plus[J]. International Journal of Hydrogen Energy, 2017, 42(15).
[23] Lee S J, Jung C Y, Yi S C. Computational Analysis on the Electrode Geometric Parameters for the Reversible Solid Oxide Cells[J]. Electrochimica Acta, 2017, 242: 86-99.
[24] Ni M. 2D Thermal Modeling of a Solid Oxide Electrolyzer Cell (SOEC) for Syngas Production by H2O/CO2 Co-Electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6389-6399.
[25] Yoon K J, Lee S I, An H, et al. Gas Transport in Hydrogen Electrode of Solid Oxide Regenerative Fuel Cells for Power Generation and Hydrogen Production[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3868-3878.
[26] Li W, Shi Y, Luo Y, et al. Theoretical Modeling of Air Electrode Operating in SOFC Mode and SOEC Mode: The Effects of Microstructure and Thickness[J]. International Journal of Hydrogen Energy, 2014, 39(25).
[27] Yuan J, Sunden B. On Mechanisms and Models of Multi-component Gas Diffusion in Porous Structures of Fuel Cell Electrodes[J]. International Journal of Heat and Mass Transfer, 2014, 69: 358-374.
[28] Andersson M, Yuan J, Sunden B. SOFC Modeling Considering Hydrogen and Carbon Monoxide as Electrochemical Reactants[J]. Journal of Power Sources, 2013, 232: 42-54.
[29] Apostol M. On the Gas-Liquid Transition[J]. Romanian Journal of Physics, 2008, 53(3-4).
[30] Teng H, Zhao T S. An Extension of Darcy's Law to Non-Stokes Flow in Porous Media[J]. Chemical Engineering Science, 2000, 55(14): 2727-2735.
[31] Wang L, Perez-Fortes M, Madi H, et al. Optimal Design of Solid-Oxide Electrolyzer Based Power-to-Methane Systems: A Comprehensive Comparison Between Steam Electrolysis and Co-Electrolysis[J]. Applied Energy, 2018, 211: 1060-1079.
[32] Ferguson J R, Fiard J M, Herbin R. Three-dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells[J]. Journal of Power Sources, 1996, 58(2): 109-122.
[33] Kleinlogel C M, Gauckler L J. Mixed Electronic-Ionic Conductivity of Cobalt Doped Cerium Gadolinium Oxide[J]. Journal of Electroceramics, 2000, 5(3): 231-243.
[34] Mineshige A, Kobune M, Fujii S, et al. Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure[J]. Journal of Solid State Chemistry, 1999, 142(2): 374-381.
[35] Anselmi-Tamburini U, Chiodelli G, Arimondi M, et al. Electrical Properties of Ni/YSZ Cermets Obtained Through Combustion Synthesis[J]. Solid State Ionics, 1998, 110(1-2): 35-43.
[36] Yoon K J, Lee S I, An H, et al. Gas Transport in Hydrogen Electrode of Solid Oxide Regenerative Fuel Cells for Power Generation and Hydrogen Production[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3868-3878.
[37] Lee S J, Jung C Y, Yi S C. Computational Analysis on the Electrode Geometric Parameters for the Reversible Solid Oxide Cells[J]. Electrochimica Acta, 2017, 242: 86-99.