LIN Xu-yang1, JIN Jie1, WANG Fang1, XING Jing-wen1, GAO Dong-shuo1. Effects of Wall Temperature on Flow Characteristics of Hydrogen Fuel Scramjet Combustor[J]. Journal of Propulsion Technology, 2020, 41(5): 1097-1102.
[1] Tishkoff J M, Drummond J P, Edwards T, et al. Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion[R]. AIAA 97-1017.
[2] 周建峰. 壁面热状态对超声速燃烧室燃烧性能的影响[D]. 黑龙江:哈尔滨工业大学, 2015.
[3] Daniel J M, James F D. Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flameholder[J]. Science Direct, 2009, 32(2): 2397-2404.
[4] Fischer C, Neuenhahn T, Olivier H. Numerical Investigation of the Isolator Flow Field of a SCRAMJET Engine with Elevated Wall Temperatures[J]. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, 112(11): 415-422.
[5] Bleilebens M, Olivier H. On the Influence of Elevated Surface Temperatures on Hypersonic Shock Wave/Boundary Layer Interaction at a Heated Ramp Model[J]. Shock Waves, 2006, 15(5): 301-312.
[6] Neuenhahn T, Olivier H. Influence of the Wall Temperature and the Entropy Layer Effects on Double Wedge Shock Boundary Layer Interactions[R]. AIAA 2006-8136.
[7] Kanda T, Sunami T, Tomioka S, et al. Mach 8 Testing of a Scramjet Engine Model[J]. Journal of Propulsion and Power, 2001, 17(1): 132-138.
[8] Kanda T, Chinzei N, Kudu K, et al. Autoignited Combustion Testing in a Water-Cooled Scramjet Combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 657-664.
[9] Fan X J, Yu G, Li J G, et al. Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor[J]. Journal of Propulsion and Power, 2006, 22(1): 103-110.
[10] Yu G, Fan X J, Li J G. Experimental Study on Combustion of Thermally-Cracked Kerosene in Model Supersonic Combustors[R]. AIAA 2006-4514.
[11] Yu G, Fan X J, Li J G, et al. Combustion and Ignition of Thermally Cracked Kerosene in Supersonic Model Combustors[J]. Journal of Propulsion and Power, 2007, 23(2): 317-324.
[12] Bao Wen, Zong Youhai, Chang Juntao, et al. Effects of Wall Temperature on the Scramjet Combustion Characteristics[C]. Brussels: Proceedings of the 10th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows, 2011.
[13] 艾 青, 夏新林, 孙凤贤. 壁面热特性对超声速燃烧室热环境的影响[J]. 工程热物理学报, 2009, 8(30): 1373-1375.
[14] 马继承. 超燃冲压发动机燃烧室性能影响因素的对比分析[D]. 黑龙江:哈尔滨工程大学, 2015.
[15] 郑忠华. 双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[D]. 湖南:国防科学技术大学, 2003.
[16] 兰中秋, 邓彤天, 钟晶亮, 等. 氢气超声速燃烧过程的多步简化反应机理数值模拟[J]. 北京大学学报(自然科学版), 2017, 53(3): 397-404.