Effects of Slant Angle of Film Hole on Fatigue Properties of Single Crystal Superalloy
1.College of Mechanical and Electrical Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;2.School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University, Xi’an 710129,China
ZHANG Dong-xu1, HE Jin-yang1, WEN Zhi-xun2, LIU Lu2, LIANG Jian-wei1. Effects of Slant Angle of Film Hole on Fatigue Properties of Single Crystal Superalloy[J]. Journal of Propulsion Technology, 2021, 42(1): 192-199.
[1] 邹望之, 郑新前. 航空涡轴发动机发展趋势[J]. 航空动力学报, 2019(12): 2577-2588.
[2] 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
[3] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-970.
[4] 梁春华, 索德军, 孙明霞. 美国第6代战斗机发动机关键技术综述[J]. 航空发动机, 2016, 42(2): 93-97.
[5] 周 明, 杨青峰, 张洪玉. 航空涡轮叶片气膜冷却孔激光加工技术进展[J]. 中国基础科学, 2016, (5): 35-42.
[6] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016, 59(21): 50-56.
[7] 胡春燕, 刘新灵, 陶春虎. 电液束加工对DD6单晶合金气膜孔损伤行为研究[J]. 稀有金属材料与工程, 2019, 48(10): 3190-3194.
[8] 刘新灵, 陶春虎, 刘春江, 等. 航空发动机叶片气膜孔加工方法及其演变分析[J]. 材料导报, 2013, (21): 120-123.
[9] Mazur Z, Luna-Ramírez A, Juárez-Islas J A, et al. Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy[J]. Engineering Failure Analysis, 2005, 12(3): 474-486.
[10] Lee K D, Kim K Y. Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness[J]. International Journal of Heat & Mass Transfer, 2010, 53(15-16): 2996-3005.
[11] Lu Y, Allison D, Ekkad S V. Turbine Blade Showerhead Film Cooling: Influence of Hole Angle and Shaping[J]. International Journal of Heat & Fluid Flow, 2007, 28(5): 922-931.
[12] Liu C L, Zhu H R, Zhang Z W, et al. Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Hole Pitches[J]. International Journal of Heat & Mass Transfer, 2012, 55(23-24): 6832-6845.
[13] Sun E, Heffernan T, Helmink R. Stress Rupture and Fatigue in Thin Wall Single Crystal Superalloys with Cooling Holes[J]. Superalloys, 2012, 53(12): 351.
[14] Zhang Y M, Wen Z X, Pei H Q, et al. Equivalent Model of Close-Packed Film Cooling Holes in Nickel-Based Single Crystal Cooled Black Based on Crystallographic Theory[J]. Chinese Journal of Aeronautics, 2019, 32(4): 839-850.
[15] Wen Z X, Pei H Q, Yang H, et al. A Combined CP Theory and TCD for Predicting Fatigue Lifetime in Single-Crystal Superalloy Plates with Film Cooling Holes[J]. International Journal of Fatigue, 2018, 111: 243-255.
[16] Wen Z X, Liang J W, Liu C Y, et al. Prediction Method for Creep Life of Thin-Wall Specimen with Film Cooling Holes in Ni-Based Single-Crystal Superalloy[J]. International Journal of Mechanical Sciences, 2018, 141: 276-289.
[17] Wen Z X, Huang S, Gao H S, et al. Experimental Investigation on Low Cycle Fatigue Properties of GH3536 Alloy with Film Cooling Holes in Different Drilling Processes[J]. Engineering Failure Analysis, 2017, 82: 190-197.
[18] Zhou Z J, Wang L, Wen J L, et al. Effect of Skew Angle of Holes on the Tensile Behavior of a Ni-Base Single Crystal Superalloy[J]. Journal of Alloys & Compounds, 2015, 628: 158-163.
[19] Weck A, Wilkinson D S. Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.
[20] Rau C A. Elastic-Plastic Strain Concentrations Produced by Various Skew Holes in a Flat Plate under Uniaxial Tension[J]. Experimental Mechanics, 1971, 11(3): 133-141.
[21] Liang J W, Wen Z X, Yue Z F. Numerical Simulation on the Creep Damage Evolution of Nickel-Based Single Crystal Specimens with Slant-Angled Film Cooling Holes[J]. Rare Metal Materials and Engineering, 2015, 44(11): 2656-2660.
[22] Asaro R J. Micromechanics of Crystals and Polycrystals[J]. Advances in Applied Mechanics, 1983, 23(1): 115.