Gas Path Fault Mode Identification of Turboshaft Engine Based on ReliefF-LMBP Algorithm
1.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China;2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
WANG Zhao-guang1, YANG Yu-fei1, YAN Zhao-hong2, LU Feng2. Gas Path Fault Mode Identification of Turboshaft Engine Based on ReliefF-LMBP Algorithm[J]. Journal of Propulsion Technology, 2021, 42(1): 220-229.
[1] Volponi A J. Gas Turbine Engine Health Management Past, Present and Future Trends[J]. Journal of Engine for Gas Turbines and Power-Transactions of the ASME, 2014, 136(5).
[2] Lu F, Ju H F, Huang J Q. An Improved Extended Kalman Filter with Inequality Constraints for Gas Turbine Engine Health Monitoring[J]. Aerospace Science and Technology, 2016, 58(1): 36-47.
[3] You C X, Huang J Q, Lu F. Recursive Reduced Kernel Based Extreme Learning Machine for Aero-Engine Fault Pattern Recognition[J]. Neurocomputing, 2016, 214: 1038-1045.
[4] Peng K, Hu Y J, Fan D, et al. An Adaptive Feedback Turning SIR Particle Filter and Its Application on Fault Diagnosis of Auxiliary Power Unit[C]. Orleans: 9th International Conference on Mechanical and Aerospace Engineering, 2018.
[5] Yan X, Jia M P. Compound Fault Diagnosis of Rotating Machinery Based on OVMD and a 1.5-Dimension Envelope Spectrum[J]. Measurement Science & Technology, 2016, 27(7).
[6] Li L, Wang Z, Jiang H. Aero-Engine Abrupt Failure Prognosis Based on Multi-States MOG-HMM and Viterbi Algorithm[J]. Journal of Vibration Measurement & Diagnosis, 2014, 34(2): 310 -314.
[7] 逄 珊, 杨欣毅, 张 勇, 等. 应用深度核极限学习机的航空发动机部件故障诊断[J]. 推进技术, 2017, 38(11): 2613-2621.
[8] 李本威, 林学森, 杨欣毅, 等. 深度置信网络在发动机气路部件性能衰退故障诊断中的应用研究[J]. 推进技术, 2016, 37(11): 2173-2180.
[9] 吕 升, 郭迎清, 孙 浩. 基于GA-AANN神经网络的SDQ算法的航空发动机传感器数据预处理[J]. 推进技术, 2018, 39(5): 1142-1150.
[10] Gou L F, Zhong Y. A New Fault Diagnosis Method Based on Attributes Weighted Neutrosophic Set[J]. IEEE Access, 2019, (7): 117740-117748.
[11] 刘元芳. 航空发动机气路故障的智能诊断方法研究[D]. 厦门: 厦门大学, 2018.
[12] Huang Z K, Yang C H, Zhou X J, et al. A Hybrid Feature Selection Method Based on Binary State Transition Algorithm and ReliefF[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5): 1888-1898.
[13] 潘 锋. 特征提取与特征选择技术研究[D]. 南京: 南京航空航天大学, 2011.
[14] Spola?r N, Cherman E A, Monard M C, et al. ReliefF for Multi-Label Feature Selection[C]. Fortaleza: 2nd Conference on Intelligent Systems, 2013.
[15] 黄金泉, 冯 敏, 鲁 峰. 基于自适应粒子滤波的涡扇发动机故障诊断[J]. 航空动力学报, 2014, 29(6): 1498-1504.
[16] 胡 宇, 张世英, 杨月诚, 等. 基于超球体平方根无迹Kalman滤波算法的涡扇发动机气路部件故障诊断[J]. 航空动力学报, 2014, 29(3): 689-695.
[17] Tamusa S, Tateishi M. Capabilities of a Four-Layered Feedforward Neural Network: Four Layers Versus Three[J]. IEEE Transactions on Neural Networks, 1997, 8(2): 251-155.
[18] 董 桢, 周文祥, 潘慕绚, 等. 涡轴发动机部件特性修正及更新方法[J]. 航空发动机, 2018, 44(6): 11-16.