DAI Hong-de1, CHEN Qiang-qiang2,3, DAI Shao-wu2, ZHU Min2. Rolling Bearing Fault Diagnosis Based on Smoothness Priors Approach and Permutation Entropy[J]. Journal of Propulsion Technology, 2020, 41(8): 1841-1849.
[1] 张 赟, 杨 栋, 斯彦刚, 等. 基于监督流形学习的航空发动机振动故障诊断方法[J]. 推进技术, 2017, 38(5): 1147-1154.
[2] 费成巍, 白广忱. 基于WCFSE-FSVM的转子振动故障诊断方法[J]. 推进技术, 2013, 34(9): 1266-1271.
[3] 李晓娟, 曲建岭, 邹文栋, 等. 航空发动机状态参数的关联维数分析[J]. 计算机仿真, 2013, 30(9): 56-59.
[4] 李 兵, 张培林, 任国全, 等. 形态学广义分形维数在发动机故障诊断中的应用[J]. 振动与冲击, 2011, 30(10): 208-211.
[5] 侯荣涛, 闻邦椿, 周 飙. 基于现代非线性理论的汽轮发电机组故障诊断技术研究[J]. 机械工程学报, 2005, 41(2): 142-147.
[6] Yan R, Gao R X. Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 824-839.
[7] 艾延廷, 付 琪, 田 晶, 等. 基于融合信息熵距的转子裂纹-碰摩耦合故障诊断方法[J]. 航空动力学报, 2013, 28(10): 2161-2166.
[8] 费成巍, 白广忱, 李晓颖. 基于过程功率谱熵SVM的转子振动故障诊断方法[J]. 推进技术, 2012, 33(2): 293-298.
[9] Christoph B, Bernd P. Permutation Entropy: A Natural Complexity Measure for Time Series[J]. Physical Review Letters, 2002, 88(17).
[10] 袁 明, 罗志增. 基于排列组合熵的表面肌电信号特征分析[J]. 杭州电子科技大学学报, 2012, 32(1): 64-67.
[11] Yan R, Liu Y, Gao R X. Permutation Entropy: A Nonlinear Statistical Measure for Status Characterization of Rotary Machines[J]. Mechanical Systems and Signal Processing, 2012, 29: 474-484.
[12] Moore K J, Kurt M, Eriten M, et al. Wavelet-Bounded Empirical Mode Decomposition for Measured Time Series Analysis[J]. Mechanical Systems and Signal Processing,2018, 99: 14-29.
[13] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[14] 俞 啸, 范春旸, 董 飞, 等. 基于EMD与深度信念网络的滚动轴承故障特征分析与诊断方法[J]. 机械传动, 2018, 42(6): 157-163.
[15] Chen X, Cui B. Efficient Modeling of Fiber Optic Gyroscope Drift Using Improved EEMD and Extreme Learning Machine[J]. Signal Processing, 2016, 128: 1-7.
[16] 边 杰. 基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J]. 推进技术, 2017, 38(7): 1618-1624.
[17] 石志标, 陈 斐, 曹丽华. 基于排列熵与IFOA-RVM的汽轮机转子故障诊断[J]. 振动与冲击, 2018, 37(5): 79-84.
[18] Yang Q, Ba C, Li C, et al. An Ensemble Fault Diagnosis Approach for Multimodal Process[C]. Xiamen: 2017 IEEE International Conference on Signal Processing, Communications and Computing, 2017.
[19] 郑近德, 程军圣, 杨 宇. 基于LCD和排列熵的滚动轴承故障诊断[J]. 振动.测试与诊断, 2014, 34(5): 802-806.
[20] 周念成, 王予疆, 陈 刚, 等. 低频振荡模式辨识中信号非线性去趋的平滑先验方法[J]. 电力系统保护与控制, 2012, 40(11): 1-5.
[21] 黄海峰, 易 武, 易庆林, 等. 滑坡位移分解预测中的平滑先验分析方法[J]. 水文地质工程地质, 2014,(5): 95-100.
[22] Bandt C. Permutation Entropy and Order Patterns in Long Time Series [M]. San Francisco: Time Series Analysis and Forecasting, Springer International Publishing, 2016.
[23] Wu S, Wu P, Wu C, et al. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine[J]. Entropy, 2012, 14(8): 1343-1356.
[24] Wang X Y, Liang L L, Li W Y, et al. A New SVM-based Relevance Feedback Image Retrieval Using Probabilistic Feature and Weighted Kernel Function[J]. Journal of Visual Communication & Image Representation,2016, 38: 256-275.
[25] Gonzalo E, Fernandezluna J, MartInez J L. A Brief Historical Review of Particle Swarm Optimization (PSO) [J]. Journal of Bioinformatics & Intelligent Control,2012, 1(1): 3-16.