XIANG Le1, CHEN Hui1, TAN Yong-hua1,2, LIU Shi-xin3, XU Kai-fu3, ZHANG Ya-tai1. Study of Cavitation Thermodynamic Effect of Liquid Rocket Engine Inducer[J]. Journal of Propulsion Technology, 2020, 41(4): 812-819.
[1] Tsujimoto Y, Yoshida Y, Maekawa Y, et al. Observations of Oscillating Cavitation of an Inducer[J]. Journal of Fluid Engnieering, 1997, 119(4): 775-781.
[2] 陈 晖, 李 斌, 张恩昭, 等. 液体火箭发动机高转速诱导轮旋转空化[J]. 推进技术, 2009, 30(4): 390-395.
[3] 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308.
[4] 项 乐, 陈 晖, 谭永华, 等. 诱导轮空化热力学效应实验研究进展[C]. 北京:第11届全国水力机械及其系统学术年会, 2018.
[5] Stahl H A, Stepanoff A J. Thermodynamic Aspects of Cavitation in Centrifugal Pumps [J]. Journal of Basic Engineering, 1956, 78: 1691-1693.
[6] Ruggeri R S, Moore R D. Method for Prediction of Pump Cavitation Performance for Various Liquids, Temperature Liquid, and Rotative Speeds[R]. NASA-TN-D-5292, 1969.
[7] Ball C L, Meng P R. Cavitation Performance of 84° Helical Pump Inducer Operated in 37°R and 42°R Liquid Hydrogen[R]. NASA TM X-1360, 1967.
[8] Meng P R, Moore R D. Cavitation and Noncavitation Performance of 78° Helical Inducer in Hydrogen[R]. NASA TM X-2131, 1968.
[9] Kovich G. Comparison of Predicted and Experimental Cavitation Performance of 84° Helical Inducer in Water and Hydrogen[R]. NASA TN D-7016, 1970.
[10] Franc J P, Rebattet C, Coulon A. An Experimental Investigation of Thermal Effects in a Cavitating Inducer[J]. Journal of Fluid Engineering, 2004, 126(5): 716-723.
[11] Franc J P, Rebattet C, Coulon A, et al. Thermodynamic Effect on Cavitating Inducer Part II: On-Board Measurements of Temperature Depression within Leading Edge Cavities[J]. Journal of Fluid Engineering, 2010, 132(2).
[12] Yoshida Y, Kikuta K, Hasegawa S, et al. Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen[J]. Journal of Fluid Engineering, 2007, 129(3): 273-278.
[13] Ito Y, Tsunoda A, Kurishita Y, et al. Experimental Visualization of Cryogenic Backflow Vortex Cavitation with Thermodynamic Effects[J]. Journal of Propulsion and Power, 2016, 32(1): 71-82.
[14] Cervone A, Testa R, Agostino L, et al. Thermal Effects on Cavitation Instabilities in Helical Inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899.
[15] Pace G, Valentini D, Pasini A, et al. Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames[J]. Journal of Fluid Engineering, 2018, 141(4).
[16] Ehrlich D A, Schwille J A, Welle R P, et al. A Water Test Facility Liquid Rocket Engine Turbopump Cavitation Testing[C]. Ann Arbor: Proceedings of the 7th International Symposium on Cavitation, 2009.
[17] Ehrlich D A, Murdock J W. A Dimensionless Scaling Parameter for Thermal Effects on Cavitation in Turbopump Inducers[J]. Journal of Fluid Engnieering, 2015, 137(4).
[18] Kim J, Song S J. Measurement of Thermal Parameter and Reynolds Number Effects on Cavitation Instability Onset in a Turbopump Inducer[J]. Journal of the Global Power and Propulsion Society, 2017, (1): 157-170.
[19] Li X, Li J, Wang J. Study on Cavitation Instabilities in a Three-Bladed Inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056.
[20] 崔宝玲, 陈 杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4): 148-155.
[21] 潘中永, 袁寿其. 泵空化基础[M]. 镇江:江苏大学出版社, 2013.
[22] Lemmon E W, McLinden M O, Huber M L. Reference Fluid Thermodynamic and Transport Properties[DB]. USA: NIST Standard Database 23 (version 9.1, 2013)