YAO Chang-xin1, YU Jin2. A Physical Surrogate Fuel Model for RP-3 Aviation Kerosene and Applications[J]. Journal of Propulsion Technology, 2020, 41(4): 934-941.
[1] 胡冬冬, 刘晓明, 张绍芳, 等. 2016年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2017, (1): 28-33.
[2] 章思龙, 秦 江, 周伟星, 等. 高超声速推进再生冷却研究综述 [J]. 推进技术, 2018, 39(10): 23-36.
[3] Pitz W J, Mueller C J. Recent Progress in the Development of Diesel Surrogate Fuels[J]. Progress in Energy and Combustion Science, 2011, 37(3): 330-350.
[4] Huber M, Smith B, Ott L, et al. Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve[J]. Energy & Fuels, 2008, 22(2): 1104-1114.
[5] Bruno T J, Huber M L. Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties[J]. Energy & Fuels, 2010, 24(8): 4277-4284.
[6] Slavinskaya N A, Zizin A, Aigner M. On Model Design of a Surrogate Fuel Formulation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(11).
[7] 范学军, 俞 刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192.
[8] Zhong F, Fan X, Yu G, et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[9] 裴鑫岩, 侯凌云, 莫崇康, 等. 航空煤油替代燃料模型热物性[J]. 航空动力学报, 2015, 30(9): 2122-2128.
[10] 程泽源, 朱剑琴, 金 钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398.
[11] 曾 文, 刘 靖, 张治博, 等. 一种新的RP-3航空煤油模拟替代燃料[J]. 航空动力学报, 2017, 32(10): 2314-2320.
[12] Yu J, Wang Z, Zhuo X, et al. Surrogate Definition and Chemical Kinetic Modeling for Two Different Jet Aviation Fuels[J]. Energy & Fuels, 2016, 30(2): 1375-1382.
[13] Yu J, Ju Y, Gou X. Surrogate Fuel Formulation for Oxygenated and Hydrocarbon Fuels by Using the Molecular Structures and Functional Groups[J]. Fuel, 2016, 166(2): 211-218.
[14] 徐佳琪, 郭俊江, 刘爱科, 等. RP-3替代燃料自点火燃烧机理构建及动力学模拟[J]. 物理化学学报, 2015, 31(4): 643-652.
[15] Benson S W, Buss J H. Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties[J]. The Journal of Chemical Physics, 1958, 29(3): 546-572.
[16] Won S H, Dooley S, Veloo P S, et al. The Combustion Properties of 2, 6, 10-Trimethyl Dodecane and a Chemical Functional Group Analysis[J]. Combustion and Flame, 2014, 161(3): 826-834.
[17] Wang N, Zhou J, Pan Y, et al. Determination of Critical Properties of Endothermic Hydrocarbon Fuel RP-3 Based on Flow Visualization[J]. International Journal of Thermophysics, 2014, 35(1): 13-18.
[18] Huber M L. NIST Thermophysical Properties of Hydrocarbon Mixtures Database[DB]. USA: US Department of Commerce, 2007.
[19] Deng H, Zhang C, Xu G, et al. Density Measurements of Endothermic Hydrocarbon Fuel at Sub-and Supercritical Conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986.
[20] Deng H, Zhang C, Xu G, et al. Viscosity Measurements of Endothermic Hydrocarbon Fuel from (298 to 788) K under Supercritical Pressure Conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365.
[21] Deng H, Zhu K, Xu G, et al. Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions[J]. Journal of Chemical & Engineering Data, 2011, 57(2): 263-268.
[22] Xu G, Jia Z, Wen J, et al. Thermal-Conductivity Measurements of Aviation Kerosene RP-3 from (285 to 513) K at Sub-and Supercritical Pressures[J]. International Journal of Thermophysics, 2015, 36(4): 620-632.
[23] Ren Y Z, Zhu J Q, Deng H W. Numerical Study of Heat Transfer of RP-3 at Supercritical Pressure[J]. Advanced Materials Research, 2013, 663(2): 470-476.