YU Da-ren1,QIAO Lei1,JIANG Wen-jia1,LIU Hui1. Development and Prospect of Electric Propulsion Technology in China[J]. Journal of Propulsion Technology, 2020, 41(1): 1-11.
[1] 鄂 鹏, 于达仁. 航天器电推进技术研究进展及发展方向[J]. 深空探测研究, 2007, (2): 43-48.
[2] Choueiri E Y. A Critical History of Electric Propulsion: The First 50 Years (1906-1956)[J]. Journal of Propulsion & Power, 2004, 20(2): 193-203.
[3] Brewer G R. Ion Propulsion: Technology and Applications[J]. Gordon & Breach, 1970, 60(2).
[4] Sovey J S, Rawlin V K, Patterson M J. A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I[R]. AIAA 99-2270.
[5] Tverdokhlebov S O. Overview of Russian Electric Propulsion Activities[R]. AIAA 2002-3562.
[6] Kozubskii K N, Murashko V M, Rylov Y P, et al. Stationary Plasma Thrusters Operate in Space[J]. Plasma Physics Reports, 2003, 29(3): 251-266.
[7] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进, 2015, 41(2): 7-12.
[8] 张伟文, 张天平. 空间电推进的技术发展及应用[J]. 国际太空, 2015, (3): 1-8.
[9] 张 敏, 杭观荣. 电推进——空间推进技术的革命[J]. 中国航天, 2016, (2): 7-12.
[10] Levchenko I, Xu S, Teel G, et al. Recent Progress and Perspectives of Space Electric Propulsion Systems Based on Smart Nanomaterials[J]. Nature Communications, 2018, 9(1).
[11] Tverdokhlebov S, Semenkin A, Garkusha V, et al. Overview of Electric Propulsion Activities in Russia[R]. AIAA 2004-3330.
[12] Kim V. Electric Propulsion Activity in Russia[C]. Pasadena: 27th IEPC, 2001.
[13] Dunning J. NASA's Electric Propulsion Program-Technology Investments for the New Millennium[R]. AIAA 2001-3224.
[14] Isbell D, O'Donnell F, Watson J G, et al. Deep Space 1 Lanuch[EB/OL]. https://www.nasa.gov/home/hqnews/presskit/1998/ds1launchq.pdf, 1998-10-16.
[15] Brophy J, Etters M, Gates S, et al. Development and Testing of the Dawn Ion Propulsion System[R]. AIAA 2006-4319.
[16] Casaregola1 C. Electric Propulsion for Station Keeping and Electric Orbit Raising on Eutelsat Platforms [C]. Japan: International Electric Propulsion Conference, 2015.
[17] Grys K D, Mathers A, Welander B, et al. Demonstration of 10400 Hours of Operation on a 4.5kW Qualification Model Hall Thruster[R]. AIAA 2010-6698.
[18] 杭观荣, 康小录. 美国AEHF军事通信卫星推进系统及其在首发星上的应用[J]. 火箭推进, 2011, 37(6): 1-8.
[19] Soulas G C, Haas T W, Herman D A, et al. Performance Test Results of the NASA457Mv2 Hall Thruster [R]. AIAA 2012-3940.
[20] Gollor M, Franke A, Schwab U, et al. Electric Propulsion Electronics Activities in Europe 2016[R]. AIAA 2016-5032.
[21] Estublier D, Saccoccia G, Jose G D A. Electric Propulsion on SMART-1-A Technology Milestone[J]. European Space Agency, 2007, 129: 40-46.
[22] Amo J G D. ESA Activities on Electric Propulsion[C]. Spain: Space Propulsion Conference, 2018.
[23] Weis S, Lazurenko A, Genovese A, et al. Overview, Qualification and Delivery Status of the HEMP Thruster based Ion Propulsion System for SmallGEO[C]. USA: The 35th International Electric Propulsion Conference, 2017.
[24] Komurasaki K. An Overview of Electric Propulsion Activities in Japan[R]. AIAA 2003-5272.
[25] Nishiyama K, Hosoda S, Ueno K, et al. Development and Testing of the Hayabusa2 Ion Engine System[J]. Transaction of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14:131-140.
[26] Cho S, Watanabe H, Kubota K, et al. Parametric Kinetic Simulation of an IHI High Specific Impulse SPT-Type Hall Thruster[R]. AIAA 2014-3426.
[27] Johnson L K, Spanjers G G, Bromaghim D R, et al. Onorbit Optical Observation of the ESEX 26kW Ammonia Arcjet[R]. AIAA 99-2710.
[28] 汤海滨, 王一白, 魏延明. 磁等离子体动力推力器回顾和认识[J]. 推进技术, 2018, 39(11):2401-2414. (TANG Hai-bin, WANG Yi-bai, WEI Yan-ming. Review and Understanding on Magnetoplasmadynamic Thrusters Technology[J]. Journal of Propulsion Technology, 2018, 39(11): 2401-2414.)
[29] Squire J P, Carter M D, Chang Diaz F R, et al. Advances in Duration Testing of the VASIMR? VX-200SS? System[C]. Salt Lake City: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
[30] Curran F M. Electric Propulsion Activities in U.S. Industry[R]. IEPC-99-001, 1999 .
[31] 杨 乐, 李自然, 尹 乐, 等. 脉冲等离子体推力器研究综述[J]. 火箭推进, 2006, 32(2): 32-36.
[32] Scharlemann C, Buldrini N, Killinger R, et a1. Qualification Test Series of the Indium Needle FEEP Micro-Propulsion System for LISA Pathfinder [J]. Acta Astronautica, 2011, 69: 822-832.
[33] Gamerocasta?o M. Characterization of a Six-Emitter Colloid Thruster Using a Torsional Balance[J]. Journal of Propulsion & Power, 2004, 20(4): 736-741.
[34] Levchenko I, Bazaka K, Ding Y, et al. Space Micropropulsion Systems for Cubesats and Small Satellites: From Proximate Targets to Furthermost Frontiers[J]. Applied Physics Reviews, 2018, 5(1).
[35] 杨 涓, 何洪庆, 毛根旺, 等. 微波等离子推力器真空环境工作的微波源研制[J]. 推进技术, 2004, 25(3): 259-262.
[36] 杨 涓, 何洪庆, 毛根旺, 等. 微波等离子推力器微波模式的合理选择[J]. 推进技术, 1999, 20(1):76-79.
[37] 杜建华, 周世安, 赵 兰, 等. HEP-100MF霍尔推力器电源处理单元[C]. 哈尔滨:2016年第十二届中国电推进技术学术研讨会.
[38] 宁中喜. 霍尔推力器羽流发散角的定向探针测量方法[J]. 推进技术, 2011, 32(6): 895-899. (NING Zhong-Xi. Directional Probe Measurement of Plume Divergence Angle in Hall Thrusters[J]. Journal of Propulsion Technology, 2011, 32(6): 895-899.)
[39] Yanlin, Dawei, Pengan, et al. Development of HEP-XXMF Series Hall Thrusters in BICE[J]. Aerospace China, 2016, 17(2): 9-16.
[40] 吴汉基, 冯学章, 蒋远大, 等. 氮氢混合气电弧加热发动机的性能试验[J]. 中国空间科学技术, 2002, 22(4): 57-63.
[41] 沈 岩, 魏延明, 陈 君, 等. 1kW级肼电弧加热发动机工程样机研究[J]. 推进技术, 2011, 32(6): 845-851.
[42] 汤海滨, 姬罗栓, 刘 宇, 等. 小功率电弧等离子体发动机实验数据采集系统[J]. 北京航空航天大学学报, 2001, 27(5): 615-618.
[43] ANS M, WU H J. MDT-2A Teflon Pulsed Plasma Thruster[R]. AIAA 81-0713.
[44] 胡宗森. 40J脉冲等离子体推力器(PPT)性能研究[D]. 北京:中国科学院空间科学与应用研究中心, 2002.
[45] 脉冲等离子体推力器工作过程理论和实验研究[D]. 长沙:国防科学技术大学, 2007.
[46] 郭登帅, 康小明, 刘欣宇, 等. 针式铟场发射电推力器的研制及实验特性[J]. 推进技术, 2018, 39(4): 955-960.
[47] 高 辉, 段 俐, 胡 良, 等. 基于镓铯对比的场发射电推力器分析与研制[J]. 推进技术, 2015, 36(2):314-320.
[48] 李 波, 王一白, 张普卓, 等. VASIMR中螺旋波等离子体源设计[J]. 北京航空航天大学学报, 2012, 38(6): 720-725.
[49] 姚 露, 杨文将, 王宝军, 等. MPDT超导磁喷管外部磁场影响分析[J]. 中国空间科学技术, 2018, 38(5): 34-41.
[50] Tianping Z. The LIPS-200 Ion Electric Propulsion System Development for the DFH-3B Satellite Platform[C]. Beijing: 64th International Astronautical Congress, 2013.
[51] Zhang T P. Initial Flight Test Results of the LIPS-200 Electric Propulsion System on SJ-9A Satellite[C]. Washington: International Electric Propulsion Conference, 2013.
[52] 魏冰洁, 孙小菁, 王小永. 全电推进卫星平台现状与进展[J]. 真空与低温, 2016, 22(5): 301-305.
[53] 田立成, 高 俊, 李兴坤, 等. LHT-100自励磁霍尔推力器热特性测试和热真空实验研究[J]. 推进技术, 2016, 37(4): 793-800.
[54] 田立成, 赵成仁, 张天平, 等. LHT-100霍尔电推进系统鉴定试验研究[J]. 真空, 2017, (4).
[55] Ning Z, Liu H, Yu D, et al. Effects of Ionization Distribution on Plasma Beam Focusing Characteristics in Hall Thrusters[J]. Applied Physics Letters, 2011, 99(22).
[56] 田立成, 赵成仁, 张天平, 等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术, 2017, 38(11): 2411-2421.
[57] 高 俊, 邹达人, 汤章阳, 等. SJ-17卫星磁聚焦霍尔电推进系统在轨试验评估[C]. 北京:2017年第十三届中国电推进技术学术研讨会, 2017.
[58] 丁永杰, 扈延林, 颜世林, 等. 聚焦磁场及发散磁场对霍尔推力器壁面侵蚀的影响研究[J]. 推进技术, 2015, 36(5): 795-800.
[59] 王小永, 张天平, 王 亮, 等. SJ-18卫星多模式电推进系统研制最新进展[C]. 北京: 2017年第十三届中国电推进技术学术研讨会, 2017.
[60] Grys K D, Rayburn C, Wilson F, et al. BPT-4000 Multi-Mode 4.5kW Hall Thruster Qualification Status[R]. AIAA 2003-4552.
[61] Tighe W, Chien K R, Solis E, et al. Performance Evaluation of the XIPS 25cm Thruster for Application to NASA Discovery Missions[R]. AIAA 2006-4666.
[62] Wu W R, Liu W W, Dong Q, et al. Investigation on the Development of Deep Space Exploration[J]. Science China Technological Sciences, 2012, 55(4): 1086-1091.
[63] Perino M A, Fenoglio F, Pelle S, et al. Outlook of Possible European Contributions to Future Exploration Scenarios and Architectures[J]. Acta Astronautica, 2013, 88: 25-34.
[64] Chang D F, Squire J P, Carter M, et al. An Overview of the VASIMR Engine[C]. Ohio: 2018 Joint Proplsion Conference, 2018.
[65] 宁津生, 李建成, 罗志才, 等. 我国地球重力场研究的进展[J]. 测绘与空间地理信息, 2002, 25(4): 6-9.
[66] 吴岳良, 胡文瑞. 中国的引力波探测计划[J]. 科学世界, 2017, (4): 1-1.
[67] 新 华. 中国未来将实施四次重大深空探测任务[J]. 太空探索, 2017, (3): 5-5.
[68] 东方星. 我国高分卫星与应用简析[J]. 卫星应用, 2015, (3): 44-48.
[69] 航天科工“虹云工程”计划发射156颗小卫星建立低轨宽带互联网星座[J]. 卫星与网络, 2017, (4): 72-72.
[70] 萨顿 G P, 比布拉兹 O, 著. 洪 鑫, 张宝烔, 等译. 火箭发动机基础[M]. 北京:科学出版社, 2003.
[71] Feili D, Loeb H, Schartner K, et al. Testing of New μN-RITs at Giessen[R]. AIAA 2005-4263.
[72] Koizumi H, Kuninaka H. Performance of the Miniature and Low Power Microwave Discharge Ion Engine μ1[R]. AIAA 2010-6617.
[73] Feili D, Lotz B, Bonnet S, et al. μNRIT-2.5-A New Optimized Microthruster of Giessen University[R]. IEPC-2009-174.
[74] Snyder N J, Williams W M, Denton D L, et al. A Satellite Freed of All but Gravitational Forces: "TRIAD I"[J]. Journal of Spacecraft & Rockets, 1974, 11(9): 637-644.
[75] Bencze W J, Debra D B, Herman L, et al. On-Orbit Performance of the Gravity Probe B Drag-Free Translation Control System[J]. Advances in the Astronautical Sciences, 2006, 125(3).
[76] Allasio A, Anselmi A, Catastini G, et al. Goce Mission: Design Phases and in-Flight Experiences[J]. Advances in the Astronautical Sciences, 2010, 137: 627-646.