Journal of Propulsion Technology ›› 2020, Vol. 41 ›› Issue (1): 12-27.DOI: 10.13675/j.cnki. tjjs. 190442
• Review • Previous Articles Next Articles
Online:
2020-01-20
Published:
2020-01-20
李永1,周成1,吕征2,叶东东1,王戈1,丛云天1,刘镇星1
作者简介:
通信作者:李 永,博士,博导,研究员,研究领域为先进空间推进技术。E-mail:liyongaay@163.com
基金资助:
LI Yong1,ZHOU Cheng1,LYU Zheng2,YE Dong-dong1,WANG Ge1,CONG Yun-tian1,LIU Zhen-xing1. Progress on High Power Space Nuclear Electric Propulsion Technology Development[J]. Journal of Propulsion Technology, 2020, 41(1): 12-27.
李永,周成,吕征,叶东东,王戈,丛云天,刘镇星. 大功率空间核电推进技术研究进展[J]. 推进技术, 2020, 41(1): 12-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://jpt.tjjsjpt.com/EN/10.13675/j.cnki. tjjs. 190442
[1] Ronald J L. Strategic Technologies for Deep Space Transport[C]. Colorado: 39th Annucal AAS Guidance Navigation and Control Conference, 2016. [2] Palac D, Horvat G, Jankovskv R, et al. Nuclear Electric Propulsion Systems for Robotic and Human Exploration[C]. Orlando: 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005. [3] David J C, Richard R, Harold G. Ground Test Strategy for a Nuclear Thermal Propulsion Engine[C]. Ohio: AIAA Joint Propulsion Conference, 2018. [4] David R M, Stanley K B, Laura M B. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System[C]. Cleveland: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. [5] Doherty M P, Holcomb R S. Summary and Recommendations on Nuclear Electric Propulsion Technology for the Space Exploration Initiative[R]. NASA-TM-105707, 1993. [6] Waldemar B, Elisa C. The Benefits of Using Nuclear Electric Propulsion in Space[C]. Toronto: 65th International Astronautical Congress, 2014. [7] Petukhovb V G, Popovb G A, Mogulkinb A I. A Realistic Concept of a Manned Mars Mission with Nuclear Electric Propulsion[J]. Acta Astronautica, 2015, 116: 299-306. [8] Koroteev A S, Akimov V N, Popov S A. The Project of Creation of Transport Power Module on the Basis of Nuclear Power Propulsion System of the Megawatttype[J]. Poliot Mag, 2011, (4): 93-99. [9] Frisbee R H. SP-100 Nuclear Electric Propulsion for Mars Cargo Missions[C]. Washington: Energy Technology Engineering Center, 1993. [10] Jupiter Icy Moons Orbiter (JIMO). An Element of the Prometheus Program[R]. JPL Publication 04-16 982-R06933. [11] Richard B. Disruptive Technologies for Power and Propulsion (DIPOP) Fission Nuclear Options[C]. Beijing: 64th International Astronautical Congress, 2013. [12] Tim T. MEGAHIT: Update on the Advanced Propulsion Roadmap for HORIZON2020[C]. Cumbria: Space Power Symposium, 2014. [13] Voss, Susan S. SNAP (Space Nuclear Auxiliary Power) Reactor Overview[R]. AFWL-TN-84-14. [14] Cockeram D J, Dieckamp H M, Wilson R F. SNAP-10A Program Including Design, Development and Flight Testing[C]. San Francisco: AIAA Second Annual Meeting, 1965. [15] Armijo J S, Josloff A T, Bailey H S, et al. SP-100 Progress[C]. Cleveland: AIAA/NASA/OAI Conference on Advanced SEI Technologies, 1991. [16] Marc A G, David P, Patrick R, et al. The Kilopower Reactor Using Stirling Technology (KRUSTY) Nuclear Ground Test Results and Lessons Learned[C]. Ohio: 2018 International Energy Conversion Engineering Conference, 2018. [17] Bennett G L. A Look at the Soviet Space Nuclear Power Program[C]. Washington: 24th lntersociety Energy Conversion Engineering Conference, 1989. [18] Gryaznov G M. 30th Anniversary of the Startup of Topaz—The First Thermionic Nuclear Reactor in the World [J]. Atomic Energy, 2000, 89(1): 510-515. [19] Polansky G, Schmidt G, Voss S, et al. Evaluating Russian Space Nuclear Reactor Technology For United States Applications[C]. Indianapolis: 30th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, 1994. [20] Mason L S, Schreiber J G. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications[R]. NASA/TM-2007-214976. [21] 王晓博. 千瓦级空间核反应堆电源发展现状[J]. 工程技术研究, 2017, 40(10). [22] Lee M. A Summary of Closed Brayton Cycle Development Activities at NASA[M]. Troy NY: NASA Glenn Research Center, 2009. [23] Davis J. Design and Fabrication of the Brayton Rotating Unit[R]. NASA CR-1870, 1972. [24] Harty R B, Otting W D, Kudija C T. Applications of Brayton Cycle Technology to Space Power[J]. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(1):28-32. [25] Lee M, Arthur B, Luis P. Experimental Investigations from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster[R]. NASA/TM—2004-212960. [26] El-Genk M S, Tournier J M. Noble-Gas Binary Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems[J]. Journal of Propulsion and Power, 2007, 23(4):863-873. [27] Dostal V, Driscoll M J, Hejzlar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors[R]. MIT-ANP-TR-100, 2002. [28] Wright S A, Conboy T M, Parma E J. Summary of the Sandia Supercritical CO2 Development Program[C]. Boulder: The 3rd International Symposium on Supercritical CO2 Power Cycles, 2011. [29] Mason L S, Poston D I. A Summary of NASA Architecture Studies Utilizing Fissions Surface Power Technology[R]. NASA TM-2011-216819. [30] Schreiber J G, Thieme L G. Accomplishments of the NASA GRC Stirling Technology Development Project[C]. Providence: 2nd International Energy Conversion Engineering Conference, 2004. [31] Wood J G, Carroll C, Matejczyk, et al. Advanced 80 We Stirling Convertor Phase II Development Progress[C]. San Francisco: 3rd International Energy Conversion Engineering Conference, 2005. [32] Furlong R, Shaltens R. Technology Assessment of DOE’s 55We Stirling Technology Demonstrator Convertor (TDC)[C]. Las Vegas: 35th Intersociety Energy Conversion Engineering Conference, 2000. [33] Timothy R. Free Piston Stirling Convertor Controller Development at NASA Glenn Research Center[C]. Portsmouth: 1st International Energy Conversion Engineering Conference, 2003. [34] Jeffery S R. A Free-Piston Stirling Engine/Linear Alternator Controls and Load Interaction Test Facility[C]. Providence: 2nd International Energy Conversion Engineering Conference, 2004. [35] Gary W, Neill L. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications[J]. American Institute of Physics, 2003, 654(1): 83-88. [36] Mason L S, Poston D I. A Summary of NASA Architecture Studies Utilizing Fissions Surface Power Technology[R]. NASA TM-2011-216819. [37] Takeshi H. Preliminary Test Results on 200We Free Piston Stirling Engine Convertor[C]. Portsmouth: 1st International Energy Conversion Engineering Conference, 2003. [38] Takeshi H. Basic Research on Solar Stirling Power Technology for Future Space Applications[C]. New York: 34th Intersociety Energy Conversion Engineering Conference, 1999. [39] Harada N, Kien I C, Hishikawa M. Basic Studies on Closed Cycle MHD Power Generation System for Space Application[C]. Washington: Proceedings of the 35th AIAA Plasmadynamics and Lasers Conference, 2004. [40] Slavin V S, Bakos G C, Milovidova T A. Space Power Installation Based on Solar Radiation Collector and MHD generator[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 49l-503. [41] Drake B G. Human Exploration of Mars Design Reference Architecture 5.0[R]. NASA-SP-2009-566. [42] Harada N. Closed Cycle MHD Power Generation System Without Alkali—Metal Seed[C]. New York:Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 1996. [43] 杨 谢, 石 磊. 氦-氙混合气体物性对布雷顿循环影响分析[J]. 原子能科学技术, 2018, 52(8): 68-75. [44] 王建中, 王 波, 杨冬冬. 空间用气体轴承斯特林发电机的实验研究[C]. 南京:第十二届全国低温工程大会论文集, 2015. [45] 刘飞标, 朱安文, 唐玉华. 磁流体发电系统在空间电源中的应用研究[J]. 航天器工程, 2015, 24(1). [46] 刘飞标, 朱安文. 月球基地闭环核能磁流体发电技术初步研究[J]. 载人航天, 2017 , 23(2). [47] Randolph T M, Polk J E. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity[C]. San Diego: Space 2004 Conference and Exhibit, 2004. [48] Elliott, Fred. An Overview of the High Power Electric Propulsion (HiPEP) Project[C]. Fort Lauderdale: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004 [49] Hall S J, Florenz R E, Gallimore A D, et al. Implementation and Initial Validation of a 100kW Class Nested-Channel Hall Thruster[C]. Cleveland: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. [50] Florenz R E, Hall S J, Gallimore A D, et al. First Firing of a 100kW Nested-Channel Hall Thruster[C]. Washington: 33rd International Electric Propulsion Conference, 2013. [51] Casaregola C, Cesareti'i G, Andrenucci M. The European HiPER Programme: High Power Electric Propulsion Technology for Space Exploration [C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [52] Zurbach S, Lasgorceix P, Cornu N. HIPER: A 20kW High Power Hall Effect Thruster for Exploration[C]. Prague: 61st International Astronautical Congress, 2010. [53] Alexander V, Leonid E Z, Alexander E S. Feasibility of High Power Multi-Mode EPS Development Based on the Thruster with Anode Layer[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [54] Albertoni R, Paganucci F, Rossetti P, et al. Experimental Study of a Hundred-Kilowatt-Class Applied-Field Magnetoplasmadynamic Thruster[J]. Journal of Propulsion and Power, 2013, 29(5): 1138-1145. [55] Adam B, Peter J, Georg H. Performance of 100 kW Steady State Applied-Field MPD Thruster[C]. Matsuyama: International Symposium on Space Technology and Science, 2017. [56] Longmier B, Squire J, Olsen C, et al. VASIMR? VX-200 Improved Throttling Range[C]. Atlanta: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. [57] Cassady L D, Longmier B W, Olsen C S, et al. VASIMR Performance Results[C]. Nashville: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010. [58] Jared P S, Mark D C, Franklin C D, et al. Run-time Accumulation Testing of the 100kW VASIMR ? VX-200SS Device[C]. Cincinnati: 2018 Joint Propulsion Conference, 2018. [59] Richard R H, Thomas M R. Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems[J]. Journal of Propulsion and Power, 2012, 28(1): 166-175. [60] John A H, Gerald M H, John M S. Power Electronics Development for the SPT-100 Thruster[C]. Seattle: 23rd International Electric Propulsion Conference, 1993. [61] Richard R H, Thomas M R, David Y O, et al. Evaluation of a 4.5kW Commercial Hall Thruster System for NASA Science Missions[C]. San Jose: 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. [62] Philip C T, Robert M, Steve W. Status of the NEXT 7kW Power Processing Unit[C]. Tucson: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005. [63] Luis R P, Karin E B, Walter S, et al. Development of High-Power Hall Thruster Power Processing Units at NASA GRC[C]. Orlando: 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015. [64] Luis R P, Robert J S, Michael V A. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices[C]. Washington: 33rd International Electric Propulsion Conference, 2013. [65] Raymond L, Alec D G. Constant-Power Performance and Plume Measurements of a Nested-Channel Hall-Effect Thruster[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [66] Olivier D, David L M, ? Michael , et al. End-to-End Testing of the PPS?5000 Hall Thruster System with a 5kW Power Processing Unit[C]. Kobe-Hyogo: 34th International Electric Propulsion Conference, 2015. [67] Casaregola1 C, Cesaretti G, Andrenucci M. The European HiPER Programme for Future High Power Electric Propulsion Technologies[C]. Wiesbaden: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011. [68] 王守国, 张 岩. SiC材料及器件的应用发展前景[J]. 中国自然杂志, 2011, 33(1). [69] Kuriki K, Morimoto S, Nakamaru K. Flight Performance Test of MPD Thruster System[C]. Las Vegas: 15th International Electric Propulsion Conference, 1981. [70] Polk J J, Pivirotto T. Alkali Metal Propellants for MPD Thrusters[C]. Cleveland: AIAA Conference on Advanced SEI Technologies, 1991. [71] Tikhonov V B, Semenikhin S A, Polk J E, et al. Performance of 130kW MPD Thruster with an External Magnetic Field and Li as Propellant[C]. Cleveland: 25th International Electric Propulsion Conference, 1997. [72] Kodys A D. Lithium Mass Flow Control for High Power Lorentz Force Accelerators[J]. AIP Conference Proceedings, 2001, 552(1). [73] Dan L. Investigation of Efficiency in Applied Field Magnetoplasmadynamic Thrusters[D]. New Jersey: Princeton University, 2012. [74] 鲁海峰, 杨鑫勇, 黄 涛, 等. 国外碘工质电推进技术研究综述[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [75] Dressler R A, Chiu Y, Levandier D J. Propellant Alternatives for Ion and Hall Effect Thrusters[C]. Reno: 38th Aerospace Sciences Meeting and Exhibit, 2000. [76] Szabo J, Pote B, Paintal S, et al. Performance Evaluation of an Iodinei-Vapor Hall Thruster[J]. Journal of Propulsion and Power, 2012, 28(4): 848-857. [77] 高 俊, 李宗良, 邹达人, 等. 5kW 多模式电推进系统研究进展[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [78] 苟浩亮, 张 兵, 曾昭奇, 等. 电推进系统比例供给单元关键技术研究[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [79] 王海兴, 耿金越, 陈世强. 一种固体锂推进剂管路填充装置及其填充方法[P]. 中国专利: [80] 张云雁, 魏福智, 耿金越. 电推进MPDT锂推进剂供给方案研究及发展建议[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [81] 肖开阳, 王仲远, 叶 胜. 基于MPD推力器的锂贮供系统方案研究[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [82] Hyers R W, Tomboulian B N, P D Craveet al. Lightweight High-Temperature Radiator for Space Propulsion[C]. Huntsville: Advanced Space Propulsion Workshop, 2012. [83] Mason, Lee S. A Power Conversion Concept for the Jupiter Icy Moons Orbiter[J]. Journal of Propulsion and Power, 2004, 20(5): 902-910. [84] Jet Propulsion Laboratory. Project Prometheus Final Report[R]. 982-R120461, 2005. [85] Tomboulian B N, Hyers R W. High-Temperature Carbon Fiber Radiator for Nuclear Electric Power and Propulsion: Project Overview and Update[C]. Mississippi: Nuclear and Emerging Technologies for Space, 2014. [86] Walker D G, Vineyard E A, Linkous R. Modeling and Analysis of a Heat Exchanger with Carbon-Fiber Fin Structures[J]. International Journal of Heat and Mass Transfer, 2006, 49(13). [87] Hyers R W, Tomboulian B N, Crave P D, et. al. Lightweight, High Temperature Radiator for In-Space Nuclear-Electric Power and Propulsion[R]. M12-2292, 2014. [88] Mason L, Gibson M, Poston D. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions[C]. Albuquerque: Nuclear and Emerging Technologies for Space, 2013. [89] Hay R, Anderson W. Water-Titanium Heat Pipes for Spacecraft Fission Power[C]. Orlando: International Energy Conversion Engineering Conference, 2015. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: