Journal of Propulsion Technology ›› 2020, Vol. 41 ›› Issue (9): 2059-2069.DOI: 10.13675/j.cnki.tjjs.200151

• Combustion, Heat and Mass Transfer • Previous Articles     Next Articles

Numerical Investigation on Resistance Reduction Characteristics of New Finned Vortex Reducer Device

  

  1. Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Online:2020-09-15 Published:2020-09-15

新型翅片式减涡器减阻特性数值研究

侯晓亭,王锁芳,张凯,夏子龙   

  1. 南京航空航天大学 能源与动力学院 航空发动机热环境与热结构工业和信息化部重点实验室, 江苏 南京 210016
  • 作者简介:侯晓亭,硕士生,研究领域为发动机流动与冷却。E-mail:1085972278@qq.com
  • 基金资助:
    国家科技重大专项(2017-III-0011-0037)。

Abstract: In order to reduce the pressure loss during radial air entrainment of compressor, based on the design of the new fins element structure, the effects of new fins element structure on radial air entrainment pressure loss were studied. Numerical study was carried out on the de-swirl system of different rotational speed and new fins structure. The structure of radial air entrainment and pressure loss distribution curve of compressor co-rotating cavity under different working conditions were obtained. The results show that the new fins element structure can restrain the swirl ratio of air flow and reduce the loss of air entrainment pressure, and that the fins element channel width and height have the best value to make the vortex reducer drag reducing effect better. The drag reduction effect is 86.5% higher than that of the simple cavity model under the optimal structure, which the fins element channel width is L=0.78 and the channel height is R3=0.97. The high and low fins structure can play a better drag reduction effect. With the increase of one side fin height, the drag reduction effect is better when the height increased L1=0.3, and the drag reduction benefit is the same when the A side or B side fin increases. On the one hand, the drag reduction performance of the optimal high and low fins structure is 87.5%, 29% and 7.8% higher than that of the simple cavity model, the typical fins vortex reducer model and the fins element channel with L=0.78 and R3=0.97, respectively; on the other hand, the optimal high and low fins structure can reduce the quality of the fins element and has high engineering application value.

Key words: New finned vortex reducer;Finned element structure;Co-rotating cavity;Total pressure loss;Swirl ratio

摘要: 为了降低压气机径向引气过程中的压力损失,在设计出新型翅片单元结构的基础上,研究了新型翅片单元结构对径向引气压力损失的影响规律,对不同转速、新型翅片结构的去旋系统开展了数值研究,得到了不同工况下压气机共转盘腔径向引气的流场结构及压力损失分布曲线。研究结构表明:新型翅片单元结构能够抑制盘腔内气流旋流比,降低引气压力损失;翅片单元通道宽度和高度均存在最佳值使得减涡器减阻效果较好,在优选结构翅片单元通道宽度L=0.78,通道高度R3=0.97的条件下,其减阻效果较简单盘腔模型提高86.5%。高低翅片结构能起到较好的减阻效果,随着单侧翅片高度的升高减阻效果逐渐增强,在本文结构下增加单侧翅片高度L1=0.3时减阻效果最优,且A侧或B侧翅片增加带来的减阻效益相同。一方面,最优高低翅片结构其减阻性能相比于简单盘腔模型、典型翅片式减涡器模型以及翅片单元通道宽度L=0.78,通道高度R3=0.97的结构模型分别提高87.5%,29%,7.8%;另一方面,最优高低翅片结构能够减轻翅片单元的质量,具有较高的工程应用价值。

关键词: 新型翅片式减涡器;翅片单元结构;共转盘腔;总压损失;旋流比