Journal of Propulsion Technology ›› 2020, Vol. 41 ›› Issue (9): 2099-2119.DOI: 10.13675/j.cnki.tjjs.200320
• Structure, Strength and Reliablity • Previous Articles Next Articles
Online:
2020-09-15
Published:
2020-09-15
陈伟1,刘璐璐1,宣海军2,罗刚1,赵振华1,韩佳奇1,周标1
作者简介:
李 迪,硕士,高级工程师,研究领域为航空发动机结构强度设计和试验。E-mail:lidi831616@163.com
基金资助:
CHEN Wei1, LIU Lu-lu1, XUAN Hai-jun2, LUO Gang1, ZHAO Zhen-hua1, HAN Jia-qi1, ZHOU Biao1. Review on Dynamic Response and Safety of Engine Structure under Sudden High Energy Load[J]. Journal of Propulsion Technology, 2020, 41(9): 2099-2119.
陈伟,刘璐璐,宣海军,罗刚,赵振华,韩佳奇,周标. 突加高能载荷作用下航空发动机结构动态响应及安全性综述[J]. 推进技术, 2020, 41(9): 2099-2119.
Add to citation manager EndNote|Ris|BibTeX
[1] Wilbeck J S, Barber J P. Bird Impact Loading[J]. The Shock and Vibration Bulletin, 1978, 48(2): 115-122. [2] Barber John P, Taylor Henry R, Wilbeck James S. Bird Impact Forces and Pressures on Rigid and Compliant Targets[J]. Bird Strikes, 1978, 46(1): 135-142. [3] Lavoie M A, Gakwaya A, Ensan M N, et al. Validation of Available Approaches for Numerical Bird Strike Modeling Tools[J]. International Review of Mechanical Engineering, 2007, 1(4): 225-231. [4] Lavoie M A, Gakwaya A, Ensan M N, et al. Bird’s Substitute Tests Results and Evaluation of Available Numerical Methods[J]. International Journal of Impact Engineering, 2009, 36(10-11): 1276-1287. [5] Boehman L T, Challita A. A Model for Prediction Bird and Ice Impact Loads on Structures[R]. AFWALTR-82-2046, AD A119408, 1982: 15-23. [6] Robert S B. Structural Element and Real Blade Impact Testing-Volume I[R]. AFWALTR-82-2121, ADA127744, 1983: 1469-1486. [7] 罗 刚, 赵振华, 沈 峘, 等. 一种阀膜组合型自动注气空气炮设计与验证[J]. 航空发动机, [8] 彭迎风, 辛 勇. 冲击式滑阀开炮机构的研究和设计[J]. 机械制造, 2006, 44(4): 26-28. [9] 冯振飞, 苏铁熊, 范小龙. 某可调节式液压缓冲器的优化仿真与分析[J]. 机械设计与制造工程, 2020, 49(3): 10-14. [10] Meguid F E. Analysis of Geometry Effects of an Artificial Bird Striking An Aeroengine Fan Blade[J]. International Journal of Impact Engineering, 2008, 35(4): 487-498. [11] Ritt S A, Johnson A, Voggenreiter H. Improvement of Substitute Bird for Impact Testing[C]. Seville: 2nd Aerospace Structural Impact Dynamics International Conference, 2015. [12] Frederik A, Geert L. Characterization of Real and Substitute Birds Through Experimental and Numerical Analysis of Momentum Average Impact Force and Residual Energy in Bird[J]. International Journal of Impact Engineering, 2017, 99(4): 1-13. [13] Seidt J D, Periira J M, Hammer J T, et al. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube[R]. NASA/TM-2012-217661. [14] 尹 晶, 范尔宁. 鸟撞击载荷的冲量与时间因素的确定[J]. 南京航空航天大学学报, 1994, 26(1): 68-74. [15] 陈 伟, 漆文凯, 高德平. 载荷与响应耦合下叶片鸟撞击响应分析[J]. 航空动力学报, 1998, 13(1): 94-96, 112-113. [16] 陈 伟, 宋迎东, 尹 晶, 等. 离心载荷作用下平板叶片鸟撞击响应计算[J]. 航空动力学报, 1997, 12(2): 11-13. [17] Ramachandra. Evaluation of Transient Engine-Bearing-loads Due to Bridstrikes[M]. India: Gas Turbine Research Establishment Ministry of Defence, 1996. [18] 罗 刚. 大涵道比涡扇发动机吸鸟结构安全性分析与评估方法[D]. 南京: 南京航空航天大学, 2018. [19] 唐家茂, 宣海军, 彭 煜, 等. 单级轴流压气机叶片预置裂纹法包容性试验研究[J]. 燃气涡轮试验与研究, 2018, 31(1): 18-23. [20] 何 庆. 航空发动机机匣包容性机理及数值仿真方法研究[D]. 杭州: 浙江大学, 2012. [21] He Z, Xuan H, Bai C. A Blade Release Method for FBO Test[J]. Experimental Techniques, 2018, 42(3): 311-318. [22] 吕登洲. 航空发动机包容试验中风扇叶片爆破飞脱技术研究[D]. 杭州: 浙江大学, 2017. [23] 张国静. 航空发动机风扇叶片爆破飞脱技术研究[D]. 杭州: 浙江大学, 2017. [24] 郭明明, 吕登洲, 洪伟荣, 等. 航空发动机机匣包容试验叶片飞脱方法[J]. 航空发动机, 2016, 42(2): 73-76. [25] Shmotin Y, Gabov D, Ryabov A, et al. Numerical Analysis of Aircraft Engine Fan Blade-Out[R]. AIAA 2006-4620. [26] Dzenan H. Mechanical Loads on a Turbofan Engine Structue at Blade-Off[D]. Lu1ea: Lulea University of Technology, 2009. [27] 刘璐璐, 赵振华, 陈 伟, 等. 叶片丢失后发动机整机响应模拟试验与仿真[J]. 航空动力学报, 2018, 33(2): 290-298. [28] 吴建林. 航空发动机叶片丢失激励下整机响应分析[D]. 南京: 南京航空航天大学, 2016. [29] O'Toole B, Karpanan K, Feghhi M. Experimental and Finite Element Analysis of Preloaded Bolted Joints under Impact Loading[C]. Rhode Island: AIAA/ASME/ASCE/AHS/ASC Structures, [30] Klok A V. Mechanical Behaviour of Bolted Joints under Impact Rates of Loading[D]. Michigan State: Michigan State University, 2012. [31] 严 波, 王海坤, 何 斌. 典型接合面冲击动态响应[J]. 噪声与振动控制, 2012, 32(6): 58-61. [32] 马艳红, 梁智超, 王桂华, 等, 航空发动机叶片丢失问题研究综述[J]. 航空动力学报, 2016, 31(3): 513-526. [33] Dzenan H. Mechanical Loads on a Turbofan Engine Structure at Blade-Off[D]. Lu1ea: Lu1ea University of Technology, 2009. [34] Sun G Y, Palazzolo A, Provenza A, et al. Long Duration Simulations Including Thermal Growths for Dual-Rotor Gas Turbine Engine[J]. Journal of Sound and Vibration, 2008, 316(1): 147-163. [35] Dr J J, Prof H U. Stability Analysis of Full Annular Rub in Rotor-tologtator Systems[J]. Proceedings of Applied Mechanics and Mathematics, 2003, 2(1): 88-89. [36] Jiang J, Ulbrich H. Stability Analysis of Sliding Whirl in a Nonlinear Jeffcott Rotor with Cross-Coupling Stiffness Coefficients[J]. Nonlinear Dynamics, 2001, 24(3): 269-283. [37] Groll G V, Ewins D J. The Harmonic Balance Method With Arc-length Continuation in Rotor-Stator Contact Problems[J]. Journal of Sound and Vibration, 2001, 241(2): 223-233. [38] Shang Z Y, Jiang J, Hong L. The Influence of the Cross-Coupling Effects on the Dynamics of Rotor/Stator Rubbing[C]. Chendu: ICDVC, [39] Peletan L, Sébastien Baguet, Torkhani M, et al. Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics[J]. Nonlinear Dynamics, 2014, 78(4): 2501-2515. [40] Sinha S K. Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event with Contact-Impact Rub Loads[J]. Journal of Sound and Vibration, 2013. 332(9): 2253-2283. [41] Wilkes J C, Childs D W, Dyck B J, et al. The Numerical and Experimental Characteristics of Multimode Dry-Friction Whip and Whirl[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(5): 502-503. [42] Nitschke S, Wollmann T, Ebert C, et al. An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions under Engine-Like Mechanical Conditions[J]. Wear, 2019, 422-423: 161-166. [43] 洪 杰, 栗天壤, 王永锋, 等. 叶片丢失激励下航空发动机柔性转子系统的动力学响应[J]. 航空动力学报, 2018, 33(2): 257-264. [44] 洪 杰, 陈 成, 王永锋, 等. 突加不平衡激励下高速柔性转子系统振动特性试验[J]. 航空动力学报, 2018, 33(1): 15-23. [45] Yu P, Zhang D Y, Ma Y H, et al. Dynamic Modeling and Vibration Characteristics Analysis of the Aero-Engine Dual-Rotor System with Fan Blade Out[J]. Mechanical Systems and Signal Processing, 2018, 106: 158-175. [46] 魏 静, 白培鑫, 杨攀武, 等. 叶片丢失对齿轮涡扇发动机风扇轴振动影响的研究[J]. 振动工程学报, 2018, 31(2): 226-237. [47] 刘 阳, 李 诚, 李富才, 等. 航空发动机叶片脱落的非线性瞬态动力学研究[J]. 机械工程学报, 2017, 55(13): 23-37. [48] 罗 灵. FBO激励下转子-支承系统瞬态动力学响应特性研究[D]. 杭州: 浙江大学, 2017. [49] 叶 冬. 高速柔性转子突加大不平衡响应研究[D]. 杭州: 浙江大学, 2014. [50] 郑兆昌, 谭明一. 非线性系统动态响应的数值计算方法[J]. 应用数学和力学, 1985, 6 (1): 93-101. [51] 李其汉, 赵福安, 张世平. 带弹性阻尼支承的转子系统丢失叶片瞬态响应试验研究[J]. 航空动力学报, 1992, 7(2): 103-107. [52] 任兴民, 顾家柳, 戈立春. 转子-机匣系统的瞬态动力响应计算[J]. 西北工业大学学报, 1996, 14(2): 234-238. [53] 王宗勇, 龚 斌, 闻邦椿. 质量及激励幅值突变转子系统动力学研究[J]. 振动与冲击, 2008, 27(8): 48-51. [54] 王宗勇, 龚 斌, 闻邦椿. 质量及激励幅值突变转子系统动力学研究[J]. 振动与冲击, 2008, 27(8): 48-51 [55] 祝长生. 带辅助轴承的主动电磁轴承-柔性转子系统的突加不平衡响应[J]. 振动与冲击, 2010, 29(S): 25-27. [56] 陈 果. 双转子航空发动机整机振动建模与分析[J]. 振动工程学报, 2011, 24(6): 619-632. [57] 李 涛, 任兴民, 岳 聪, 等. 单盘转子突加不平衡瞬态响应特征研究[J]. 机械科学与技术, 2012, 31(6): 924-927. [58] 晏砺堂, 张世平, 李其汉. 高效多孔环挤压油膜阻尼器的减振特性研究[J]. 航空动力学报, 1993, 8(3): 225-233. [59] 夏 南, 孟 光, 冯心海. 油膜惯性力对双盘转子-SFD系统突加不平衡和加速响应特性的影响[J]. 航空动力学报, 2000, 15(1): 71-74. [60] 夏冶宝, 任兴民, 秦卫阳, 等. 浮环挤压油膜阻尼器对模拟低压转子突加不平衡响应影响分析[J]. 航空动力学报, 2015, 30 (11): 2771-2778. [61] 周海仑, 罗贵火, 冯国全, 等. 含浮环式挤压油膜阻尼器的转子系统响应分析[J]. 航空动力学报, 2001, 16(3): 644-650. [62] 周海仑, 罗贵火, 艾延廷, 等. 含浮环式挤压油膜阻尼器转子系统的突加不平衡响应分析[J]. 航空动力学报, 2014, 29(3): 578-584. [63] 许 斌, 徐尉南, 张 文. 单盘转子的同步全周碰摩及其稳定性分析[J]. 复旦学报(自然科学版), 2006, 5(2): 148-154. [64] 张华彪, 陈予恕. 非线性转子系统突加不平衡的碰摩响应[C]. 西安: 第九届全国动力学与控制学术会议会议手册, 2015. [65] 陈 果. 航空发动机整机振动耦合动力学模型及其验证[J]. 航空动力学报, 2012, 27(8): 1887-1894. [66] 陈 果. 含复杂滚动轴承建模的航空发动机整机振动耦合动力学模型[J]. 航空动力学报, 2017, 32(9): 2193-2204. [67] 赵 斌, 陈 果, 冯国全. 航空发动机整机振动半实物建模方法研究[J]. 推进技术, 2016, 37(2): 346-353. [68] 赵 斌. 航空发动机整机振动半实物仿真模型研究[D]. 南京: 南京航空航天大学, 2015. [69] 张大义, 刘烨辉, 洪 杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5): 768-773. [70] 陈 萌, 马艳红, 刘书国, 等. 航空发动机整机有限元模型转子动力学分析[J]. 北京航空航天大学学报, 2007, 33(9): 1013-1016. [71] 王海涛. 某型航空发动机整机振动特性分析[D]. 南京: 南京航空航天大学, 2010. [72] Liebich R, Kalinowski P, Bargen O V. A Full Size Rotor Dynamic Test Rig for Whole Engine Mechanics of Aero Engines[C]. London: Institution of Mechanical Engineers-10th International Conference on Vibrations in Rotating Machinery, 2012. [73] Cosme N, Chevrolet D, Bonini J, et al. Prediction of Engine Loads and Damages Due to Fan Blade off Event[C]. Denver: Structural Dynamics, and [74] Husband J B. Developing an Efficient FEM Structural Simulation of a Fan Blade off Test in a Turbofan Jet Engine[D]. Saskatoon: University of Saskatoon, 2007. [75] Sinha S K, Dorbala S. Dynamic Loads in the Fan Containment Structure of a Turbofan Engine[J]. Journal of Aerospace Engineering, 2009, 22(3): 260-269. [76] Rajeev Venkatachalapathy, Davila G P, Prakash J. Catalytic Decomposition of Hydrogen Peroxide in Alkaline Solutions[J]. Electrochemistry Communications, 1999, 1(12): 614-617. [77] Sengoz K, Kan S, Eskandarian A. Development of a Generic Gas Turbine Engine Fan Blade-Out Full-Fan Rig Model[R]. DOT/FAA/TC-14/43, 2015. [78] Heidari M, Carlson D L, Sinha S, et al. An Efficient Multi-Disciplinary Simulation of Engine Fan-Blade Out Event Using MD Nastran[C]. Schaumburg: AlAA/ASME/ ASCE/AHS/ASC Structures, [79] Czeslaw W. Fan Blade Optimization under Medium Bird Strike Load[C]. Huntington: Product Development Conference, 2004. [80] 洪 杰, 许美玲, 马艳红. 风扇叶片丢失激励下转子-支承系统结构安全性设计策略[J]. 航空动力学报, 2016, 31(11): 2723-2730. [81] 吴建林. 航空发动机叶片丢失激励整机响应分析方法研究[D]. 南京: 南京航空航天大学, 2016. [82] 刘璐璐, 赵振华, 陈 伟, 等. 叶片丢失后发动机整机响应模拟试验与仿真[J]. 航空动力学报, 2018, 33(2): 290-298. [83] [84] Horsley J. The 'Rolls-Royce' Way of Validating Fan Integrity[C]. California: Joint Propulsion Conference and Exhibit, 2013. [85] 黄志勇, 陈 伟, 赵海欧, 等. 评定叶片鸟撞击损伤的参数与方法[J]. 航空发动机, 2005, 31(1): 28-30. [86] 罗 刚, 陈 伟, 赵振华, 等. 航空发动机吸鸟适航验证关键参数分析方法[J]. 机械科学与技术, 2016, 35(11): 1774-1779. [87] Bertke S R. Structural Element and Real Blade Impact Testing[J]. International Journal of Mechanics and Materials in Design, 1983, 2: 1-86. [88] 关玉璞, 张在坤, 赵振华, 等. 粒子分离器涡流叶片鸟撞击损伤试验[J]. 航空动力学报, 2007, 22(12), 2094-2100. [89] Guan Y P, Zhao Z H, Chen W, et al. Foreign Object Damage to Fan Rotor Blades of Aeroengine, Part I: Experimental Study of Bird Impact[J]. Chinese Journal of Aeronautics, 2007, 20(5): 408-414. [90] Chen W, Luo G, Zhang S. Development Strategy of Engine Bird Ingestion Certification Technology[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(5): 485-494. [91] 柴象海, 侯 亮, 王志强, 等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定[J]. 航空动力学报, 2016, 31(5): 1032-1038. [92] Kim M, Vahdati M, Imregun M. Aeroelastic Stability Analysis of a Bird-Damaged Aeroengine Fan Assembly[J]. Aerospace Ence and Technology, 2001, 5(7): 469-482. [93] Guida M. Study, Design and Testing of Structural Configurations for the Bird-Strike Compliance of Aeronautical Components[M]. Naples: Aerospace Engineering University of Naples, 2008. [94] Prakash R, Channegowda H. A Study on Bird Impact Damages on Shrouded Fan Blades of an Aero-Engine[C]. Bangalore: ASME 2013 Gas Turbine India Conference, 2013. [95] Naik Rajiv, Logan Charles. Damage Resistant Materials for Aero-Engine Applications[R]. AIAA 99-1370. [96] Zeng C, Jiang Xiang-hua, Chai Xiang-hai, et al. TC4 Hollow Fan Blade Structural Optimization Based on Bird-Strike Analysis[J]. Procedia Engineering, 2015, 99: 1385-1394. [97] 马 力, 姜甲玉, 薛庆增. 航空发动机第1级风扇叶片鸟撞研究[J]. 航空发动机, 2014, 40(2): 65-69. [98] 刘建明, 蒋向华, 王 东, 等. 实体元空心叶片鸟撞流固耦合研究及数值模拟[J]. 航空发动机, 2013, 39(2): 70-74. [99] Meguid SA, Mao RH, Ng TY. FE Analysis of Geometry Effects of an Artificial Bird Striking an Aeroengine Fan Blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498. [100] Guan Y P, Zhao Z H, Chen We, et al. Foreign Object Damage to Fan Rotor Blades of Aeroengine Part II: Numerical Simulation of Bird Impact[J]. Chinese Journal of Aeronautics, 2008, 21(4): 328-334. [101] Siemann M H, Ritt S A. Novel Particle Distributions for SPH Bird-Strike Simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 343(1): 746-766. [102] Zhang Z, Li L, Zhang D. Effect of Arbitrary Yaw/Pitch Angle in Bird Strike Numerical Simulation Using SPH Method[J]. Aerospace Science and Technology, 2018, 81: 284-293. [103] Zhang, D, Fei Q. Effect of Bird Geometry and Impact Orientation in Bird Striking on a Rotary Jet-Engine Fan Analysis Using SPH Method[J]. Aerospace Science and Technology, 2016, 54: 320-329. [104] Vignjevic R, Orlowski M, De Vuyst T, et al. A Parametric Study of Bird Strike on Engine Blades[J]. International Journal of Impact Engineering, 2013, 60: 44-57. [105] Liu J, Li Y. Numerical Simulation of a Rotary Engine Primary Compressor Impacted by Bird[J]. Chinese Journal of Aeronautics, 2013, 26(4): 926-934. [106] Jain R, Ramachandra K. Bird Impact Analysis of Pre-stressed Fan Blades Using Explicit Finite Element Code[C]. Tokyo: Proceedings of the International Gas Turbine Congress, 2003. [107] Siddens A J, Bayandor J. Detailed Post-Soft Impact Progressive Damage Analysis for a Hybrid Structure Jet Engine[C]. Brisbane: 28th International Congress of the Aeronautical Sciences, 2012. [108] Mao R H, Meguid S A, Ng T Y. Transient Three Dimensional Finite Element Analysis of a Bird Striking a Fan Blade[J]. International Journal of Mechanics and Materials in Design, 2008, 4(1): 79-96. [109] Jain R, Ramachandra K. Bird Impact Analysis of Pre-Stressed Fan Blades Using Explicit Finite Element Code[C]. Tokyo: Proceedings of the International Gas Turbine Congress, 2003. [110] Siddens A J, Bayandor J. Detailed Post-Soft Impact Progressive Damage Analysis for a Hybrid Structure Jet Engine[R]. NASA/TM-2014-218397. [111] 宣海军, 陆 晓, 洪伟荣. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25(8): 1860-1870. [112] 龚梦贤, 王旅生, 曹凤兰. 叶片包容性试验研究[J]. 航空动力学报, 1992, 7(2): 144-146. [113] 吴旭明, 宁宣熙. 机匣包容性的贝叶斯评价方法[J]. 航空学报, 1998, 19(2): 200-204. [114] 宣海军, 洪伟荣, 吴荣仁. 航空发动机涡轮叶片包容试验及数值模拟[J]. 航空动力学报, 2005, 20(5): 762-767. [115] 张晓峰, 宣海军, 吴荣仁. 航空发动机叶片包容模拟试验与数值仿真研究[J]. 航空发动机, 2005, 31(4): 39-42. [116] Xuan H J, Wu R R. Aeroengine Turbine Blade Containment Tests Using High-Speed Rotor Spin Testing Facility[J]. Aerospace Science & Technology, 2006, 10(6): 501-508. [117] 范志强, 高德平, 姜 涛, 等. 模型机匣的包容性试验和数值模拟[J]. 南京航空航天大学学报, 2006, 38(5): 551-556. [118] 范志强, 高德平, 覃志贤, 等. 航空发动机真实机匣的包容性试验[J]. 航空动力学报, 2007, 22(1): 24-28. [119] Eryilmaz I, Guenchi B, Pachidis V. Multi-Blade Shedding in Turbines with Different Casing and Blade Tip Architectures[J]. Aerospace Science and Technology, 2019, 87: 300-310. [120] Sarkar S, Atluri S N. Effects of Multiple Blade Interaction on the Containment of Blade Fragments During a Rotor Failure[J]. Finite Elements in Analysis and Design, 1996, 23(2-4): 211-223. [121] Kraus A, Frischbier J. Containment and Penetration Simulation in Case of Blade Loss in a Low Pressure Turbine[C]. Bad Mergentheim: Proceedings of the DYNAmore LS-DYNA Foru, 2002. [122] Hermosilla U J, Alcaraz L, Aja A M. Blade Impact Simulation Against Turbine Casings[C]. Boston: ABAQUS Users’ Conference, 2004. [123] Shmotin Y N, Gabov D V, Numerical Analysis of Aircraft Engine Fan Blade-Out[C]. Sacramento: 42nd AIAA/ ASME/SAE/ASEE Joint Propulsion Conference, [124] He Q, Xuan H J, Liu L L, et al. Perforation of Aero-Engine Fan Casing by a Single Rotating Blade[J]. Aerospace Science and Technology, 2013, 25(1): 234-241. [125] He Q, Xie Z, Xuan H J, et al. Multi-Blade Effects on Aero-Engine Blade Containment[J]. Aerospace Science and Technology, 2016, 49(2): 101-111. [126] 何 庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27(2): 295-299. [127] 刘璐璐, 罗 刚, 陈 伟, 等. 基于打靶试验的风扇机匣包容能力评估方法[J]. 航空发动机, 2019, 45(1): 76-82. [128] 柴象海, 张晓云, 侯 亮, 等. 航空发动机风扇机匣包容性等效试验与分析方法[J]. 振动与冲击, 2016, 35(2): 162-167. [129] [130] [131] [132] [133] [134] Prakash R, Channegowda H, Kaliyaperumal A. A Study on Bird Impact Damages on Shrouded Fan Blades of an Aero-Engine[C]. Bangalore: International Congress of the Aeronautical Sciences, 2014. [135] Liu L L, Luo G, Chen W, et al. Dynamic Behavior and Damage Mechanism of 3D Braided Composite Fan Blade under Bird Impact[J]. International Journal of Aerospace Engineering, 2018, (2): 1-16. [136] 刘 洋, 王 亮, 郭 军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响[J]. 兵工学报, 2018, 39(S1): 114-120. [137] Stotler C L, Coppa A P. Containment of Composite Fan Blades-Final Report[R]. NASA-CR-159544 (R79AEG197), 1979. [138] Stotler C L. Development of Advanced Lightweight System Containment-Final report[R]. NASA-CR-165212(R81AEG208), 1981. [139] Xuan H, Hu Y Q, Wu Y N, et al. Containment Ability of Kevlar 49 Composite Case under Spinning Impact[J]. Journal of Aerospace Engineeing, 2018, 31(2). [140] He Z K, Xuan H J, Bai C, et al. Containment of Soft Wall Casing Wrapped with Kevlar fabric[J]. Chinese Journal of Aeronautics, 2019, 32(4): 954-966. [141] 何泽侃. 芳纶纤维布缠绕增强软壁机匣包容性研究[D]. 杭州: 浙江大学, 2018. [142] He Z K, Xuan H J, Bai C, et al. Containment Tests and Analysis of Soft Wall Casing Fabricated by Wrapping Kevlar Fabric Around Thin Metal Ring[J]. Aerospace Science and Technology, 2017, 61: 35-44. [143] 牛丹丹. Kevlar织物缠绕增强机匣包容性研究[D]. 杭州: 浙江大学, 2015. [144] 张 涛. 航空发动机风扇机匣包容数值模拟技术与试验验证[D]. 南京: 南京航空航天大学, 2012. [145] Liu L L, Zhao Zhenhua, Chen Wei, et al. Influence of Pre-Tension on Ballistic Impact Performance of Multi-Layer Kevlar 49 Woven Fabrics for Gas Turbine Engine Containment Systems[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1273-1286. [146] Zhao Z H, Liu L L, Chen W, et al. Numerical Simulation Methodology of Multi-Layer Kevlar 49 Woven Fabrics in Aircraft Engine Containment Application[J]. International Journal of Crashworthiness, 2019, 24(1): 86-99. [147] Liu L L, Yang Z Z, Zhao Z H, et al. The Influences of Rheological Property on the Impact Performance of Kevlar Fabrics Impregnated with SiO2/PEG Shear Thickening Fluid[J]. Thin-Walled Structures, 2020, 151. [148] 刘 晓. STF-Kevlar织物动态力学行为与数值仿真方法研究[D]. 南京: 南京航空航天大学, 2018. [149] Griffiths B. Composite Fan Blade Containment Case[J]. High-Performance Composites, 2005, 13(3): 76-78. [150] Xuan H J, Liu L L, Chen G T, et al. Impact Response and Damage Evolution of Triaxial Braided Carbon/Epoxy Composites[J]. Textile Research Journal, 2013, 83(16): 1703-1716. [151] Liu L L, Xuan H J, Zhang N, et al. Impact Response and Damage Evolution of Triaxial Braided Carbon/Epoxy Composites[J]. Textile Research Journal, 2013, 83(17): 1821-1835. [152] Liu L L, Xuan H J, He Z K, et al. Containment Capability of 2D Triaxial Braided Tape Wound Composite Casing for Aero-Engine[J]. Polymer Composites, 2016, 37(7): 2227-2242. [153] Liu L L, Xuan H J, Chen W, et al. Modified Subcell Model Using Solid Elements for Triaxial Braided Composite under Ballistic Impact[J]. Journal of Aerospace Engineering, 2016, 29(5). [154] 刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014. [155] Boratgis E. Turbine Engine Bearing Support[P]. US: [156] John A K, Randy M V, Christopher G C. Fan Decoupling Fuse[P]. US: [157] 洪 杰, 许美玲, 马艳红, 等. 风扇叶片丢失激励下转子-支承系统结构安全性设计策略[J]. 航空动力学报, 2016, 31(11): 2723-2730. [158] 彭 刚, 李 超, 曹 冲, 等. 冲击激励转子系统动力学响应及安全性设计[J]. 推进技术, 2018, 39(5): 1111-1121. [159] Wang C, Zhang D, Ma Y H, et al. Dynamic Behavior of Aero-Engine Rotor with Fusing Design Suffering Blade off[J]. Chinese Journal of Aeronautics, 2017, 30(3): 68-81. [160] Ma C, Chen W, Liu L, et al. Response of Aeroengine with Fusing Design Suffering FBO[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-19. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: