Research Progress on Thruster Fault Diagnosis Technology for Deep-Sea Underwater Vehicle
1.Department of Technology,National Deep Sea Center,Qingdao 266237,China;2.Shandong Key Laboratory of Marine Engineering,Ocean University of China,Qingdao 266000,China;3.College of Logistics Engineering,Shanghai Maritime University,Shanghai 201306,China
CHEN Yun-sai1,2, CHU Zhen-zhong3, LIU Kun1, YANG Lei1, ZHU Da-qi3. Research Progress on Thruster Fault Diagnosis Technology for Deep-Sea Underwater Vehicle[J]. Journal of Propulsion Technology, 2020, 41(11): 2465-2474.
[1] 陈云赛. 深海失事装备探捞体系及其关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[2] Cui Wei-cheng. An Overview of Submersible Research and Development in China[J]. Journal of Marine Science and Application, 2018, 17(4): 459-470.
[3] 张铭钧, 王玉甲, 朱大奇, 等. 水下机器人故障诊断理论与技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016.
[4] 朱大奇, 胡 震. 水下机器人故障诊断与容错控制技术[M]. 北京: 国防工业出版社, 2012.
[5] 刘 坤, 陈云赛, 杨 磊, 等. 深海载人潜水器推力器布置与容错性能研究[J]. 船舶工程, 2018, 40(8): 82-86.
[6] 刘维新. 水下机器人推进器弱故障检测与预测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[7] 钱 东, 崔 立, 薛 蒙. 美国新一代电动力轻型鱼雷研发策略分析[J]. 鱼雷技术, 2007, 15(6): 1-4.
[8] 倪 天, 马 岭, 许 可. 基于磁力耦合器的载人潜水器电力推进装置研究[J]. 海洋工程, 2015, 33(1): 100-106.
[9] 俞建成, 张艾群, 王晓辉. 7000米载人潜水器推进器故障容错控制分配研究[J]. 机器人, 2006, 28(5): 519-524.
[10] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(3): 601-605.
[11] 兰加芬, 欧阳武, 严新平. 无轴轮缘推进器水动力性能分析及桨叶强度校核[J]. 船舶工程, 2018, 40(10): 52-58.
[12] Tuohy P M, Smith A C, Husband, M, et al. Rim-Drive Marine Thruster Using a Multiple-Can Induction Motor[J]. Electric Power Applications, 2013, 7(7): 557-565.
[13] Shen Yang, Hu Peng-fei, Jin Shuan-bao, et al. Design of Novel Shaftless Pump-Jet Propulsor for Multi-Purpose Long-Range and High-Speed Autonomous Underwater Vehicle[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4.
[14] 崔维成. 蛟龙号载人潜水器的故障及处理方法[M]. 上海: 上海交通大学出版社, 2016.
[15] 边信黔, 牟春晖, 严浙平, 等. 基于故障树的无人潜航器可靠性研究[J]. 中国造船, 2011, 52(1): 71-79.
[16] Xu H, Lu G, Liu J. Reliability Analysis of an Autonomous Underwater Vehicle Using Fault Tree[C]. YinChuan: Proceeding of the IEEE International Conference on Information and Automation, 2013.
[17] 王玉甲, 张铭钧, 褚振忠, 等. 水下机器人推进器故障定性诊断模型[C]. 南京: 全国技术过程故障诊断与安全性学术会议, 2011.
[18] Zhang M J, Wang Y J, Xu J A, et al. Thruster Fault Diagnosis in Autonomous Underwater Vehicle Based on Grey Qualitative Simulation[J]. Ocean Engineering, 2015, 105: 247-255.
[19] Yang K C H, Yuh J, Choi S K. Fault-Tolerant System Design of an Autonomous Underwater Vehicle ODIN: An Experimental Study[J]. International Journal of Systems Science, 1999, 30(9): 1011-1019.
[20] Ni L, Fuller C R. Control Reconfiguration Based on Hierarchical Fault Detection and Identification for Unmanned Underwater Vehicles[J]. Journal of Vibration & Control, 2003, 9(7): 735-748.
[21] Hamilton K, Lane D M, Brown K E, et al. An Integrated Diagnostic Architecture for Autonomous Underwater Vehicles[J]. Journal of Field Robotics, 2007, 24(6): 497-526.
[22] Zhao B, Skjetne R, Blanke M, et al. Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2399-2407.
[23] Sun Y S, Ran X R, Li Y M, et al. Thruster Fault Diagnosis Method Based on Gaussian Particle Filter for Autonomous Underwater Vehicles[J]. International Journal of Naval Architecture & Ocean Engineering, 2016, 8(3): 243-251.
[24] Alessandri A. Fault Diagnosis for Nonlinear Systems Using a Bank of Neural Estimators[J]. Computers in Industry, 2003, 52(3): 271-289.
[25] 王丽荣, 甘 永, 徐玉如, 等. 滑模观测器在水下机器人推力器故障诊断中的应用[J]. 哈尔滨工程大学学报, 2005, 26(4): 425-429.
[26] Baldini A, Felicetti R, Freddi A, et al. Fault Detection, Diagnosis and Fault Tolerant Output Control for a Remotely Operwated Vechiles[C]. Oulu: 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2018.
[27] Chu Z, Zhang M. Fault Reconstruction of Thruster for Autonomous Underwater Vehicle Based on Terminal Sliding Mode Observer[J]. Ocean Engineering, 2014, 88: 426-434.
[28] Chu Z, Meng F, Zhu D, et al. Fault Reconstruction Using a Terminal Sliding Mode Observer for a Class of Second-Order MIMO Uncertain Nonlinear Systems[J]. ISA Transactions, 2020, 97: 67-75.
[29] Hanai A M, Song C, Marani G, et al. Experimental Validation of Model-Based Thruster Fault Detection for Underwater Vehicles[C]. Kobe: IEEE International Conference on Robotics and Automation, 2009.
[30] Choi Jin-kyu, Kondo Hayato, Shimizu E. Thruster Fault-Tolerant Control of a Hovering AUV with Four Horizontal and Two Vertical Thrusters[J]. Advanced Robotics, 2014, 28(4).
[31] Shumsky A, Zhirabok A, Hajiyev C. Observer Based Fault Diagnosis in Thrusters of Autonomous Underwater Vehicle[C] Barcelona: 2010 Conference on Control and Fault-Tolerant Systems, 2010.
[32] Brito M P, Griffiths G. A Markov Chain State Transition Approach to Establishing Critical Phases for AUV Reliability[J]. IEEE Journal of Oceanic Engineering, 2011, 36(1): 139-149.
[33] Brito M, Griffiths G, Ferguson J, et al. A Behavioral Probabilistic Risk Assessment Framework for Managing Autonomous Underwater Vehicle Deployments[J]. Journal of Atmospheric & Oceanic Technology, 2012, 29(11): 1689-1703.
[34] Jia Q, Chen W, Zhang Y, et al. Robust Fault Reconstruction via Learning Observers in Linear Parameter-Varying Systems Subject to Loss of Actuator Effectiveness[J]. Iet Control Theory & Applications, 2014, 8(1): 42-50.
[35] 王丽荣, 丁 凯. 基于小波网络的水下机器人执行器故障诊断[J]. 系统仿真学报, 2007, 19(1): 206-209.
[36] 庞永杰, 方少吉, 王丽容. 基于小波网络的水下机器人推进器故障诊断[J]. 中国造船, 2008, 49(2): 94-100.
[37] Liang X, Zhang J, Li W, et al. Sensor Fault Diagnosis for Autonomous Underwater Vehicles[J]. Sensor Letters, 2011, 9(5): 2062-2066.
[38] Costa F B. Fault-Induced Transient Detection Based on Real-Time Analysis of the Wavelet Coefficient Energy[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 140-153.
[39] 张铭钧, 殷宝吉, 刘维新, 等. 随机干扰下AUV推进器故障特征提取与融合[J]. 华中科技大学学报(自然科学版), 2015, (6): 22-26.
[40] 刘维新, 张铭钧, 殷宝吉, 等. 基于小波最优重构尺度的AUV推进器故障检测方法[J]. 上海应用技术学院学报(自然科学版), 2015, 15(2): 130-134.
[41] Abed W, Sharma S K, Sutton R, et al. An Unmanned Marine Vehicle Thruster Fault Diagnosis Scheme Based on OFNDA[J]. Journal of Marine Engineering & Technology, 2017, 16(1): 37-44.
[42] Kim J H, Beale G O. Fault Detection and Classification in Underwater Vehicles Using the T2 Statistic[J]. Automatika Journal for Control Measurement Electronics Computing & Communications, 2002, 43(1-2): 29-37.
[43] Zhu D, Bai J, Yang S X. A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis[J]. Sensors, 2010, 10(1).
[44] 陈楚瑶, 朱大奇. 神经网络主元分析的传感器故障诊断方法[J]. 系统工程与电子技术, 2010, 32(7): 1549-1553.
[45] 程学龙, 朱大奇, 孙 兵, 等. 深海载人潜水器推进器系统故障诊断的新型主元分析算法[J]. 控制理论与应用, 2018, 35(12): 1796-1804.
[46] Jiang Y, He B, Lv P, et al. Actuator Fault Diagnosis in Autonomous Underwater Vehicle Based on Principal Component Analysis[C]. Kaohsiung: IEEE Underwater Technology, 2019.
[47] 严浙平, 迟冬南, 赵 智, 等. UUV推进系统模糊自适应融合故障诊断方法[J]. 电机与控制学报, 2012, 16(9): 14-20.
[48] He J, Li Y, Li Y, et al. Fault Diagnosis in Autonomous Underwater Vehicle Propeller in the Transition Stage Based on GP-RPF[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-9.
[49] Yin B, Zhang M, Lin X, et al. A Fault Diagnosis Approach for Autonomous Underwater Vehicle Thrusters Using Time-Frequency Entropy Enhancement and Boundary Constraint-Assisted Relative Gray Relational Grade[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2020, 234(4): 512-526.
[50] Omerdic E, Roberts G. Thruster Fault Diagnosis and Accommodation for Open-Frame Underwater Vehicles[J]. Control Engineering Practice, 2004, 12(12): 1575-1598.
[51] Liu Q, Zhu D, Yang S X. Unmanned Underwater Vehicles Fault Identification and Fault-Tolerant Control Method Based on FCA-CMAC Neural Networks, Applied on an Actuated Vehicle[J]. Journal of Intelligent & Robotic Systems, 2012, 66(4): 463-475.
[52] Talebi H A, Khorasani K. A Neural Network-Based Multiplicative Actuator Fault Detection and Isolation of Nonlinear Systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 842-851.
[53] Fagogenis G, Carolis V D, Lane D M. Online Fault Detection and Model Adaptation for Underwater Vehicles in the Case of Thruster Failures[C]. Stockholm: IEEE International Conference on Robotics and Automation, 2016.
[54] Samy N, Matias V T. Modeling and Soft-Fault Diagnosis of Underwater Thrusters with Recurrent Neural Networks[J]. IFAC PapersOnLine, 2018, 51(29).
[55] Wang Y, Zhang W, Di F, et al. An AUV Thruster Fault Diagnosis Method Based on the Improved SVDD[C]. Wuhan: IEEE 8th International Conference on Underwater System Technology: Theory and Applications, 2018.
[56] Sun Y, Wang Z, Zhang G. Fault Diagnosis Method of Autonomous Underwater Vehicle Based on Deep Learning[C]. Zhuhai: IOP Conference Series Materials Science and Engineering, 2019.