Numerical Study of Effects of Steady and Oscillating Back-Pressure on Shock Train in an Isolator
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine,Xi’an 710072,China
ZHAN Wang-jie1,2, YAN Hong1,2. Numerical Study of Effects of Steady and Oscillating Back-Pressure on Shock Train in an Isolator[J]. Journal of Propulsion Technology, 2021, 42(5): 980-990.
[1] Curran E T. Scramjet Engines: The First Forty Years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148.
[2] Heiser W, Pratt D, Daley D, et al. Hypersonic Airbreathing Propulsion[M]. Washington: AIAA Education Series, 1994.
[3] 曹学斌. 矩形隔离段流动特性及控制规律研究[D]. 南京:南京航空航天大学, 2011.
[4] Dolling D S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.
[5] 贺武生. 超燃冲压发动机研究综述[J]. 火箭推进, 2005, (1): 29-32.
[6] Matsuo K. Shock Train and Pseudo-Shock Phenomena in Supersonic Internal Flows[J]. Journal of Thermal Science, 2003, 12(3): 204-208.
[7] 廉筱纯. 航空发动机原理[M]. 西安:西北工业大学出版社, 2005.
[8] Pratt D, Heiser W. Isolator-Combustor Interaction in a Dual-Mode Scramjet Engine[R]. ASME 93-358.
[9] Yu K, Pang B, Hsu O. Implementing Active Combustion Control in Propulsion Systems[R]. AIAA 2001-3849.
[10] Ma F, Li J, Yang V, et al. Thermoacoustic Flow Instability in a Scramjet Combustor[R]. AIAA 2007-5382.
[11] Lin K C, Jackson K, Behdadnia R, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flame holder[J]. Journal of Propulsion and Power, 2010, 26(6): 1161-1169.
[12] 高天运, 梁剑寒, 孙明波. 超声速单边扩张燃烧室分离区振荡现象及其解耦分析[J]. 推进技术, 2018, 39(10): 227-239.
[13] Gaitonde D V. Progress in Shock Wave/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[14] Tan H J, Sun S, Huang H X. Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex BackGround Waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661.
[15] Su W Y, Ji Y X, Chen Y. Effects of Dynamic Backpressure on Pseudoshock Oscillations in Scramjet Inlet-Isolator[J]. Journal of Propulsion and Power, 2016, 32(2).
[16] Klomparens R, Driscoll J F, Gamba M. Response of a Shock Train to Downstream Back Pressure Forcing[R]. AIAA 2016-0078.
[17] 曹学斌, 张堃元. 超燃冲压发动机隔离段非对称来流下激波串受迫振荡流动研究[J]. 空气动力学学报, 2011, 29(2).
[18] Bruce P J K, Babinsky H , Tartinville B , et al. Experimental and Numerical Study of Oscillating Transonic Shock Waves in Ducts[J]. AIAA Journal, 2011, 49(8):1710-1720.
[19] 熊 冰. 隔离段内激波串受迫振荡特性研究[D]. 长沙:国防科学技术大学, 2016.
[20] Wang Chengpeng, Cheng Chuan, Cheng Keming, et al. Unsteady Behavior of Oblique Shock Train and Boundary Layer Interactions[J]. Aerospace Science and Technology, 2018, 79(8): 212-222.
[21] Reinartz B U, Herrmann C D, Ballmann J, et al. Aerodynamic Performance Analysis of a Hypersonic Inlet Isolator Using Computation and Experiment[J]. Journal of Propulsion and Power, 2003, 19(5).
[22] Newsome R W. Numerical Simulation of Near-Critical and Unsteady, Subcritical Inlet Flow[J]. AIAA Journal, 1984, 22(10): 1375-1379.
[23] Wong H Y W. Theoretical Prediction of Resonance in Nozzle Flows[J]. Journal of Propulsion and Power, 2005, 21(2): 300-313.
[24] Dolling D S, Smith D R. Unsteady Shock-Induced Turbulent Separation in Mach 5 Cylinder Interactions[R]. AIAA 88-0305.
[25] 熊 冰, 王振国, 范晓樯, 等. 隔离段内正激波串受迫振荡特性研究[J]. 推进技术, 2017, 38(1):1-7.
[26] 李腾骥. 下游反压引起的弯曲隔离段流场迟滞现象研究[D]. 长沙:国防科学技术大学, 2015.
[27] 曲昭兴. 复杂进出口条件下隔离段非定常流动现象研究[D]. 南京:南京航空航天大学, 2017.