Effects of Inlet Velocity Profile on Lean Ignition and Lean Blowout Limits of a Bluff Body Flame-Holder
Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
HUANG Ya-kun, HE Xiao-min, ZHU Huan-yu, XUE Chong, GUO Yu-xi. Effects of Inlet Velocity Profile on Lean Ignition and Lean Blowout Limits of a Bluff Body Flame-Holder[J]. Journal of Propulsion Technology, 2020, 41(8): 1814-1822.
[1] Mattingly J D, Heiser W H, Lieuwen T. Aircraft Engine Design[M]. Virginia: American Institute of Aeronautics and Astronautics Inc, 2002.
[2] Lovett J A, Brogan D S, Philippona D, et al. Development Needs for Advanced Afterburner Designs[R]. AIAA 2004-4192.
[3] Shanbhogue S J, Husain S, Lieuwen T. Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics[J]. Progress in Energy & Combustion Science, 2009, 35(1):98-120.
[4] Williams G C, Hottel H C, Scurlock A C. Flame Stabilization and Propagation in High Velocity Gas Streams[J]. Symposium on Combustion & Flame & Explosion Phenomena, 1948, 3(1): 21-40.
[5] Longwell J P, Weiss M A. Mixing and Distribution of Liquids in High-Velocity Air Streams[J]. Industrial & Engineering Chemistry Research, 1953, 45(3): 667-677.
[6] Zukoski E E, Marble F E. The Role of Wake Transition in the Process of Flame Stabilization in the Bluff Bodies[M]. London: Butterworth Scientific Publishers, 1954.
[7] Plee S L, Mellor A M. Characteristic Time Correlation for Lean Blowoff of Bluff-Body-Stabilized Flames[J]. Combustion & Flame, 1979, 35(79): 61-80.
[8] Glassman I. Environmental Combustion Considerations-8[M]. New York: Academic Press, 1996.
[9] Carr Z R, Forliti D J. On the Evolution of Vorticity for Bluff-Body Stabilized Premixed Flames[R]. AIAA 2010-1334.
[10] Tuttle S, Chaudhuri S, Kostka S, et al. Transitional Blowoff Behavior of Wake-Stabilized Flames in Vitiated Flow[R]. AIAA 2010-220.
[11] Kostka S, Roy S, Huelskamp B, et al. Characterization of Bluff-Body-Flame Vortex Shedding Using Proper Orthogonal Decomposition[R]. AIAA 2011-599.
[12] 李概奇, 王家骅. 低压下V形火焰稳定器后回流区流动特性研究[J]. 航空学报, 1989, 10(8): 447-449.
[13] 杨茂林, 黄 勇, 顾善建, 等. 燃油分布对V形稳定器后燃烧的影响[J]. 航空动力学报, 1996, 11(1): 49-53.
[14] 张彭岗. 典型稳定器和先进值班稳定器试验研究[D]. 南京:南京航空航天大学, 2005.
[15] 叶 超. 冲压燃烧室关键部件方案设计与性能验证试验研究[D]. 南京:南京航空航天大学, 2008.
[16] Wasserbauer C, Hathaway M. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field[J]. AIAA Journal, 1993, 8(1): 300-313.
[17] Clarke J S, Jackson S R. General Considerations in the Design of Combustion Chambers for Aircraft and Industrial Gas Turbines[J]. SAE Transactions, 1964, 72: 96-115.
[18] Shadowen J H, Egan W J J. Evaluation of Circumferential Airflow Uniformity Entering Combustors from Compressors. Volume 1: Discussion of Data and Results[R]. NASA TND-15693, 1972.
[19] Conrad E W, Scbolewski A E. Investigation of Effects of Inlet-Air Velocity Distortion on Performance of Turbojet Engine[R]. NACA-RM-E50G11, 1950.
[20] Scbultz D F, Perkins P J. Effects of Radial and Circumferential Inlet Velocity Profile Distortions on Performance of a Short-Length Double-Annular Ram-Induction Combustor[R]. NASA TND-6706, 1972.
[21] Kopp-Vaughan K M, Jensen T R, Cetegen B M, et al. Analysis of Blowoff Dynamics from Flames with Stratified Fueling[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1491-1498.
[22] Tuttle S G, Chaudhuri S, Kopp-Vaughan K M, et al. Lean Blowoff Behavior of Asymmetrically-Fueled Bluff Body-Stabilized Flames[J]. Combustion & Flame, 2013, 160(9): 1677-1692.
[23] Chaudhuri S, Kostka S, Renfro M W, et al. Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames[J]. Combustion & Flame, 2010, 157(4): 790-802.
[24] Huelskamp B, Goss L P, Richardson D, et al. Fuel Distribution and Gas Temperature Measurements in a Nonuniformly-Fueled Bluff-Body Flame[C]. Salt Lakecity: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
[25] 洪 亮. 不均匀流场下稳定器后燃油浓度场研究[D]. 南京:南京航空航天大学, 2014.
[26] 薛 冲. 不均匀流场下稳定器流动和燃烧性能研究[D]. 南京:南京航空航天大学, 2014.
[27] 张 炎, 王寅会, 何小民, 等. 不均匀流对V型火焰稳定器燃烧性能的影响[J]. 推进技术, 2017, 38(6):1310-1317.
[28] 赵自强, 何小民, 丁国玉, 等. 旋流器流量分配对三级旋流流场特性的影响[J]. 推进技术, 2017, 38(1): 140-146.
[29] Jin Y, Li Y, He X, et al. Experimental Investigations on Flow and Combustion Characteristics of a Model Trapped Vortex Combustor[J]. Applied Energy, 2014, 134: 257-269.
[30] Jiang B, Jin Y, Liu D, et al. Effects of Multi-Orifice Configurations of the Quench Plate on Mixing Characteristics of the Quench Zone in an RQL-TVC Model[J]. Experimental Thermal and Fluid Science, 2017, 83: 57-68.
[31] 丁兆波, 金 捷. 某型蒸发式稳定器气动及燃烧特性研究[J]. 火箭推进, 2013, 39(3): 27-31.
[32] 侯晓春, 季鹤鸣, 刘庆国, 等. 高性能航空燃气轮机燃烧技术[M]. 北京:国防工业出版社, 2002.
[33] 程晓军. 串联式TBCC超级燃烧室燃烧组织及性能研究[D]. 南京:南京航空航天大学, 2015.
[34] Vogel F, Smith K A, Tester J W, et al. Engineering Kinetics for Hydrothermal Oxidation of Hazardous Organic Substances[J]. AICHE Journal, 2002, 48(8): 1827-1839.
[35] Li M, He X, Zhao Y, et al. Performance Enhancement of a Trapped-Vortex Combustor for Gas Turbine Engines Using a Novel Hybrid-Atomizer[J]. Applied Energy, 2018, 216: 286-295.
[36] Dutka M, Ditaranto M, L?v?s T. Investigations of Air Flow Behavior Past a Conical Bluff Body Using Particle Imaging Velocimetry[J]. Experiments in Fluids, 2015, 56(11).