[1] Cheng T S, Wehrmeyer J A, Pitz R W, et al. Raman Measurement of Mixing and Finite-Rate Chemistry in a Supersonic Hydrogen-Air Diffusion Flame [J]. Combustion and Flame, 1994, 99(1): 157-173.
[2] Klimenko A Y, Bilger R W. Conditional Moment Closure for Turbulent Combustion [J]. Progress in Energy and Combustion Science, 1999, 25(6): 595-687.
[3] Eifler P, Kollmann W. PDF Prediction of Supersonic Hydrogen Flames [R]. AIAA 93-0448.
[4] BaurleR A, Girimaji S S. Assumed PDF Turbulence-chemistry Closure with Temperature-Composition Correlations [J]. Combustion and Flame, 2003, 134(1): 131-148.
[5] Peters N. Laminar Flamelet Concepts in Turbulent Combustion [J]. Proceedings of the Combustion Institute, 1986, 21(1): 1231-1250.
[6] Ladeinde F. A Critical Review of Scramjet Combustion Simulation [R]. AIAA 2009-127.
[7] Peters N. Laminar Diffusion Flamelet Models in Non-premixed Turbulent Combustion [J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
[8] Cook A W, Riley J J, Kosály G. A Laminar Flamelet Approach to Subgrid-Scale Chemistry in Turbulent Flows[J]. Combustion and Flame, 1997, 109(3): 332-341.
[9] Bilger R W, Pope S B, Bray K N C, et al. Paradigms in Turbulent Combustion Research [J]. Proceedings of the Combustion Institute, 2005, 30(1): 21-42.
[10] Balakrishnan G, Williams F A. Turbulent Combustion Regimes for Hypersonic Propulsion Employing Hydrogen-Air Diffusion Flames [J]. Journal of Propulsion and Power, 1994, 10(3): 434-437.
[11] Sabel’nikov V, Deshaies B, Figueira da Silva L F. Revisited Flamelet Model for Non-Premixed Combustion in Supersonic Turbulent Flows[J]. Combustion and Flame, 1998, 114(3): 577-584.
[12] Terrapon V E, Ham F, Pecnik R, et al. A Flamelet-based Model for Supersonic Combustion[M]. USA: 2009.
[13] Berglund M, Fureby C. LES of Supersonic Combustion in a Scramjet Engine Model[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2497-2504.
[14] Oevermann M. Numerical Investigation of Turbulent Hydrogen Combustion in a Scramjet Using Flamelet Modeling[J]. Aerospace Science and Technology, 2000, 4(7): 463-480.
[15] 孙明波, 范周琴, 梁剑寒, 等. 部分预混超声速燃烧火焰面模式研究综述[J]. 力学进展, 2010, 40(6).
[16] 范周琴, 孙明波, 刘卫东. 基于火焰面模型的超声速燃烧混合 LES/RANS 模拟[J]. 推进技术, 2011, 32(2): 191-196.F A N Zhou-qin , SUN Ming-bo, LIU Wei-dong.Hybrid LES/RANS Simulation of Supersonic Combustion using Flamelet Model [J]. Journal of Propulsion Technology, 2011, 32(2): 91-196.
[17] Bekdemir C, Somers L M T, de Goey L P H. Modeling Diesel Engine Combustion using Pressure Dependent Flamelet Generated Manifolds[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2887-2894.
[18] Urzay J, Kseib N, Palacios F, et al. A Stochastic Flamelet Progress-Variable Approach for Numerical Simulations of High-Speed Turbulent Combustion Under Chemical-Kinetic Uncertainties[M]. USA: Center for Turbulence Research, Annual Research Briefs, 2012.
[19] Cook D J, Pitsch H, Chen J H, et al. Flamelet-based Modeling of Auto-Ignition with Thermal Inhomogeneities for Application to HCCI Engines[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2903-2911.
[20] Saghafian A, Terrapon V E, Ham F, et al. An Efficient Flamelet-Based Combustion Model for Supersonic Flows[R]. AIAA 2011-2267.
[21] Pecnik R, Terrapon V E, Ham F, et al. Reynolds-Averaged-Navier-Stokes Simulations of the Hyshot II Scramjet[J]. AIAA Journal, 2012, 50(8): 1717-1732.
[22] Mittal V, Pitsch H. A Flamelet Model for Premixed Combustion under Variable Pressure Conditions[J]. Proceedings of the Combustion Institute, 2013, 34(2):2995-3003.
[23] Waidmann W, Alff F, Bohm M, et al. Supersonic Combustion of Hydrogen/Air in a Scramjet Combustion Chamber[J]. Space Technology, 1995, 15 (6): 421-429.
[24] Pierce C D, Moin P.A Dynamic Model for Subgrid-scale Variance and Dissipation Rate of a Conserved Scalar[J]. Physics of Fluids, 1998, 10: 30-41.
[25] Choi J Y, Jeung I S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation[J]. AIAA Journal, 2000, 38(7): 1179-1187.
[26] Choi J Y, Jeung I S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 2: Comparison[J]. AIAA Journal, 2000, 38(7): 1188-1195.
[27] Génin F, Menon S. Simulation of Turbulent Mixing behind a Strut Injector in Supersonic Flow[J]. AIAA Journal, 2010, 48(3): 526-539.
[28] Peters N.Turbulent Combustion[M]. UK:Cambridge University Press, 2000.
[29] Greenshields C J, Weller H G, Gasparini L, et al. Implementation of Semi-Discrete, Non-Staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High Speed Viscous Flows[J]. International Journal for Numerical Methods in Fluids, 2010, 63(1): 1-21.
[30] Potturi A, Edwards J R. LES/RANS Simulation of a Supersonic Combustion Experiment[R]. AIAA 2012-0611.
[31] Baurle R A. Modeling of High Speed Reacting Flows: Established Practices and Future Challenges[R]. AIAA 2004-0267.
[32] Eklund D R, Baurle R A, Gruber M R. Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion[R]. AIAA 2001-0379.
[33] Keistler P G, Gaffney R L, Xiao X, et al. Turbulence Modeling for Scramjet Application[R]. AIAA 2005-5382.
[34] Brinckman K W, Calhoon W H, Dash S M. Scalar Fluctuation Modeling for High-Speed Aeropropulsive Flows [J]. AIAA Journal, 2007, 45(5): 1036-1046.
[35] Xiao X, Edwards J R, Hassan H A, et al. Variable Turbulent Schmidt-Number Formulation for Scramjet Applications [J]. AIAA Journal, 2006, 44(3): 593-599.(编辑:张荣莉) * 收稿日期:2013-12-19;修订日期:2014-01-17。基金项目:国家自然科学基金(51176178);国家自然科学重点基金(50936005)。作者简介:曹长敏(1988—),女,博士生,研究领域为超声速湍流燃烧。E-mail:ccm777@mail.ustc.edu.cn
|