[1] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue-jun, YU Gang. Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.)
[2] Linne D L, Meyer M L, Edwards T, et al. Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel [R]. AIAA 97-3041.
[3] Brad H, Michael K. Experimental Investigation of Heat Transfer and Flow Instabilities in Supercritical Fuels[R]. AIAA 97-3043.
[4] Zhang C B, Xu G Q, Gao L, et al. Experimental Investigation on Heat Transfer of a Specific Fuel (RP-3) Flows Through Downward Tubes at Supercritical Pressure[J]. Journal of Supercritical Fluids, 2012, 72: 90-99.
[5] Liu Z H, Bi Q C, Guo Y, et al. Convective Heat Transfer and Pressure Drop Characteristics of Near-Critical- Pressure Hydrocarbon Fuel in a Mini-Channel[J]. Applied Thermal Engineering, 2013, 51(1-2): 1047-1054.
[6] Dang G X, Zhong F Q, Chen L H, et al. Numerical Investigation on Flow and Convective Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Science China: Technological Sciences, 2013, 56(2): 416-422.
[7] Wang Y Z, Hua Y X, Meng H. Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane[J]. Journal of Thermo- Physics and Heat Transfer, 2010, 24(3): 490-500.
[8] Hua Y X, Wang Y Z, Meng H. A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane inside a Horizontal Miniature Tube[J]. Journal of Supercritical Fluids, 2010, 52(1): 36-46.
[9] Zhou W X, Bao W, Qin J. Deterioration in Heat Transfer of Endothermal Hydrocarbon Fuel[J]. Journal of Thermal Science, 2011, 20(2): 173-180.
[10] Pizzarelli M, Urbano A, Nasuti F. Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants[J]. Numerical Heat Transfer, Part A: Application, 2010, 57(5): 297-314.
[11] Pizzarelli M, Nasuti F, Onofri M. CFD Analysis of Transcritical Methane in Rocket Engine Cooling Channels[J]. Journal of Supercritical Fluids, 2012, 62: 79-87.
[12] Ruan B, Meng H. Three-Dimensional Numerical Study of Supercritical Pressure Effect on Heat Transfer of Cryogenic Methane[J]. Journal of Aerospace Power, 2011, 26(7): 1480-1487.
[13] Ruan B, Meng H. Supercritical Heat Transfer of Cryogenic-Propellant Methane in Rectangular Engine Cooling Channels[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2): 313-321.
[14] 陈尊敬, 王雷雷, 孟华. 考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J]. 航空学报, 2013, 34(1): 8-18.
[15] Wang L L, Chen Z J, Meng H. Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressure[J]. Applied Thermal Engineering, 2013, 54(1): 237-246.
[16] 王雷雷, 徐可可, 孟华. 航空煤油超临界压力流/固/热耦合数值模拟[J]. 工程热物理学报, 2013, 34(7): 1357-1360.
[17] 康玉东, 孙冰. 通道参数对再生冷却通道流动换热的影响[J]. 航空动力学报, 2010, 25(2): 320-325.
[18] 刘波. 超临界压力流体在圆管内对流换热及热裂解研究 [D]. 北京:清华大学, 2013.
[19] 赵国柱, 宋文艳, 张若凌, 等. 超临界压力下正十烷流动传热的数值模拟[J]. 推进技术, 2014, 35(4): 537-543. (ZHAO Guo-zhu, SONG Wen-yan, ZHANG Ruo-ling, et al. Numerical Simulation on Flow and Heat Transfer of n-Decane Under Supercritical Pressure [J]. Journal of Propulsion Technology, 2014, 35(4): 537-543.)
[20] 刘波, 王夕, 祝银海, 等. 超临界压力正癸烷在竖直圆管内对流换热特性研究[C]. 重庆:中国工程热物理年会, 2013.
[21] 张磊, 乐嘉陵, 张若凌, 等. 超临界压力下湍流区碳氢燃料传热研究[J]. 推进技术, 2013, 34(2): 225-229. (ZHANG Lei, LE Jia-ling, ZHANG Ruo-ling, et al. Heat Transfer of Hydrocarbon Fuel in Turbulent Flow Region Under Supercritical Pressure[J]. Journal of Propulsion Technology, 2013, 34(2): 225-229.)
[22] Stiegemeier B, Meyer M L. A Thermal Stability and Heat Transfer Investigation of Five Hydrocarbon Fuel: JP-7, JP-8, JP-8+100, JP-10, and RP-1[R]. AIAA 2002-3873.(编辑:梅瑛) * 收稿日期:2014-05-27;修订日期:2014-09-12。基金项目:国家自然科学基金(51576027)。作者简介:王彦红(1983—),男,博士生,研究领域为超临界压力碳氢燃料对流换热。E-mail:wangyh.526@163.com通讯作者:李素芬(1955—),女,硕士,教授,研究领域为超临界介质传热与压降特性。E-mail: lisuf@dlut.edu.cn
|