[1] Howard P Hodson, Robert J Howell. The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines[J]. Progress in Aerospace Sciences, 2005, 41(6): 419-454.
[2] Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[J]. Journal of Turbomachinery, 1997, 113: 509-537.
[3] Sarkar S, Voke P R. Large-Eddy Simulation of Unsteady Surface Pressure over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer[J]. Journal of Turbomachinery, 2006, 128(2): 221-231.
[4] Gier J, Franke M, Hu?Bner N, et al. Designing Low Pressure Turbines for Optimized Airfoil Lift[J]. Journal of Turbomachinery, 2010, 132(3).
[5] Hodson H P, Howell R J. Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines[J]. Annual Review of Fluid Mechanics, 2005, 37:71-98.
[6] Hodson H, Dawes W. On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies[R]. ASME 96-GT-494.
[7] Zarzycki R, Elsner W, Zarzycki R. The Effect of Wake Parameters on the Transitional Boundary Layer on Turbine Blade[J]. Proceedings of the Institution of Mechanical Engineers Part a Journal of Power & Energy, 2005, 219: 471-480.
[8] Piotrowski W, Lodefier K, Kubacki S, et al. Comparison of Two Unsteady Intermittency Models for Bypass Transition Prediction on a Turbine Blade Profile[J]. Flow Turbulence & Combustion, 2008, 81(3): 369-394.
[9] Stadtmüller P, Fottner L. A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade[J]. American Society of Mechanical Engineers, 2001, 1(3).
[10] Cardamone P, Stadtmu?Ller P, Fottner L. Numerical Investigation of the Wake-Boundary Layer Interaction on a Highly Loaded LP Turbine Cascade Blade[R]. ASME 2002-GT-30367.
[11] Pecnik R, Sanz W, Pieringer P. Numerical Investigation of Unsteady Boundary Layer Transition Induced by Periodically Passing Wakes with an Intermittency Transport Equation[R]. ASME 2004-GT-53204.
[12] Lodefier K, Dick E. RANS Modelling of Wake Induced Transition with the Dynamic Intermittency Concept[R]. ASME 2006-GT-90044.
[13] 乔渭阳, 赵磊, 罗华玲, 等. 低雷诺数涡轮叶片边界层转捩及分离特性测量[J]. 推进技术, 2012, 33(6): 859-865. (QIAO Wei-yang, ZHAO Lei, LUO Hua-ling, et al. Measurement of the Transition and Separation for Turbine Blade Boundary Layer with Low-reynolds Number[J]. Journal of Propulsion Technology, 2012, 33(6): 859-865.)
[14] 李伟, 朱俊强, 李钢, 等. 基于表面热膜的超高负荷低压涡轮叶栅附面层特性[J]. 航空动力学报, 2011, 26(1): 115-121.
[15] 叶建, 邹正平. 低雷诺数下周期性尾迹/层流分离泡相互作用的大涡模拟[J]. 工程热物理学报, 2007, 28(2): 215-218.
[16] 张伟昊, 刘火星, 李维, 等. 尾迹与涡轮叶栅边界层的相互作用[J]. 航空动力学报, 2009, 24(4): 843-850.
[17] 刘志刚, 叶建, 邹正平. 有/无尾迹作用下低压涡轮叶栅分离边界层转捩的大涡模拟[J]. 航空动力学报, 2013, 28(12): 2803-2812.
[18] Smith AMO, Gamberoni N. Transition, Pressure Gradient and Stability Theory[R]. California: Report ES 26388, Douglas Aircraft Co.EI Segundo, 1956.
[19] 张玉伦, 王光学, 孟德虹, 等. [γ-Reθ]转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3): 295-301.
[20] Menter F R, Langtry R B, Likki S R, et. al. A Correlation Based Transition Model Using Local Variables: Part I-Model Formulation[R]. ASME 2004-GT-53452.
[21] Misaka T. Application of Local Correlation- Based Transition Model to Flows Around Wings[R]. AIAA 2006-918.
[22] Yoshiara T, Sasaki D, Nakahashi K. Conjugate Heat Transfer Simulation of Cooled Turbine Blades Using Unstructured-Mesh CFD Solver [R]. AIAA 2011-498.
[23] Khayatzadeh P, Nadarajah S. Laminar-Turbulent Flow Simulation for Wind Turbine Profiles Using the[γ-Reθ]Transition Model[J]. Journal of Wind Energy, 2014, 17(6): 901-918.
[24] 郑赟, 李虹杨, 刘大响. [γ-Reθ]转捩模型在高超声速下的应用及分析[J]. 推进技术, 2014, 35(3): 296-304. (ZHENG Yun, LI Hong-yang, LIU Da-xiang. Application and Analysis of [γ-Reθ]Transition Model in Hypersonic Flow[J]. Journal of Propulsion Technology, 2014, 35(3): 296-304.)
[25] 郑赟, 李虹杨. 基于新的经验关联公式的[γ-Reθ]转捩模型在高超声速流动中的应用[J]. 推进技术, 2015, 36(6): 839-845. (ZHENG Yun, LI Hong-yang, Application of[γ-Reθ]Transition Model in Hypersonic Flow Based on New Correlation Equation[J]. Journal of Propulsion Technology, 2015, 36(6): 839-845.)
[26] ZHANG Xiaodong, GAO Zhenghong. A Numecal Research on a Compressibility-Correlated Langtry’s Transition Model for Double Wedge Boundary Layer Flows [J]. Chinese Journal of Aeronautics, 2011, 24(3): 249-257.
[27] Menter F R, Langtry R, V?lker S. Transition Modelling for General Purpose CFD Codes[J]. Flow Turbulence and Combustion, 2006, 77(1-4): 277-303.
[28] Langtry R B. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes.[D]. Stuttgart: University of Stuttgart, 2006.
[29] 郑赟. 基于非结构网格的气动弹性数值方法研究[J]. 航空动力学报, 2009, 24(9): 2069-2077.
[30] 肖大启, 郑赟, 杨慧. 轴向间距对转子叶片气动激励的影响[J]. 航空动力学报, 2012, 27(10): 2307-2313.
|