[1] Government U S. Design Guide for Predicting Nonlinear Random Response of Buckled Plates[M]. US: General Books LLC, 2011.
[2] Ng Chung Fai, Wentz K R. The Prediction and Measurement of Thermo-Acoustic Response of Plate Structures[C]. USA: The Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1990.
[3] Vaicaitis R. Nonlinear Response and Sonic Fatigue of National Aerospace Space Plane Surface Panels[J]. Journal of Aircraft, 1994, 31 (1): 10-18.
[4] Lee J. Displacement and Strain Statistics of Thermally Buckled Plates[J]. Journal of Aircraft, 2001, 38(1): 104-110.
[5] Lee J. Displacement and Strain Histograms of Thermally Buckled Composite Plates in Random Vibration[R]. AIAA 96-1347.
[6] Mei C, Dhainaut J M, Duan B, et al. Nonlinear Random Response of Composite Panels in an Elevated Thermal-Acoustic Environment[J]. Journal of Aircraft, 2003, 40(4): 683-691.
[7] Chen R, Mei C. Finite Element Nonlinear Random Response of Beams to Acoustic and Thermal Loads Applied Simultaneously[R]. AIAA 93-1427-CP.
[8] Hwang C, Pi W S. Nonlinear Acoustic Response Analysis of Plates Using the Finite Element Method[J]. American Institute of Aeronautics and Astronautics, 1972, 10(3): 276-281.
[9] Maekawa S. On the Sonic Fatigue Life Estimation of Skin Structures at Room and Elevated Temperatures[J].Journal of Sound and Vibration, 1982, 80(1): 41-59.
[10] Chaboche J L, Lesne P M. A Nonlinear Continuous Fatigue Damage Model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17.
[11] Chilakamarri K B, Lee J. Thermal-Acoustic Fatigue Damage Accumulation Model of Random Snap-Through[C]. USA: The Proceeding of 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2000.
[12] Przekop A, Rizzi S A, Sweitzer K A. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response[J]. International Journal of Fatigue, 2008, 30(9): 1579-1598.
[13] Sha Y D, Gao Z J, Xu F. Influences of Thermal Loads on Nonlinear Response of Thin-Walled Structures in Thermo-Acoustic Environment[J]. Applied Mechanics and Materials, 2011, 105: 220-226.
[14] Sha Y D, Gao Z J, Xu F, et al. Influence of Thermal Loading on the Dynamic Response of Thin-Walled Structure under Thermo-Acoustic Loading[J]. Advanced Engineering Forum, 2011, (2): 876-881.
[15] 沙云东, 魏静, 高志军. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6):1336-1346.
[16] 郭小鹏, 沙云东, 柏树生, 等. 基于雨流计数法和功率谱密度法的随机声疲劳应用研究[J]. 航空发动机, 2010, 36(5): 27-31.
[17] 沙云东, 魏静, 高志军, 等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击, 2013, 32(10): 162-166.
[18] Pates, Carl Stansbbury. Analysis of Random Structure-Acoustic Interaction Problems Using Coupled Boundary Element and Finite Element Methods:[D]. USA: Old Dominion University, 1994.
[19] Norton M P. 工程噪声和振动分析基础[M]. 盛元生译. 北京:航空工业出版社, 1993.(编辑:史亚红) 收稿日期:2016-04-13;修订日期:2016-06-24。基金项目:航空基础科学基金资助基金项目(20151554002)。作者简介:沙云东,男,博士,教授,研究领域为航空发动机强度振动及噪声。E-mail: ydsha2003@sina.vip.com
|