[1] Gummer V, Wenger U, Kau H P. Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors[J]. Journal of Turbomachinery, 2000, 123(1): 40-48.
[2] Gallimore S J, Bolger J J, Cumpsty N A, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading, Part 2: Low and High Speed Designs and Test Verification[R]. ASME 2002-GT-30329.
[3] Gallimore S J, Bolger J J, Cumpsty N A, et al.The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading Part 1: University Research and Methods Development[J]. Journal of Turbomachinery, 2002, 124(5): 533-541.
[4] Okui H, Verstraete T, Van D, et al. Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors[J]. Journal of Turbomachinery, 2011, 135(3): 77-88.
[5] Sasaki T, Breugelmans F. Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance[J]. Journal of Turbomachinery, 1998, 120(3).
[6] Blaha C, Kablitz S, Hennecke D K, et al. Numerical Investigation of the Flow in an Aft- Swept Transonic Compressor Rotor[R]. ASME 2000-GT-0490.
[7] Denton J D, Xu L. The Effects of Lean and Sweep on Transonic Fan Performance[R]. ASME 2002-GT -30327.
[8] Wadia A R, Szucs P N, Crall D W, et al. Foward Swept Rotor Studies in Multistage Fans with Inlet Distortion[R]. ASME 2002-GT-30326.
[9] Bergner J, Kablitz S, Passrucker H, et al. Influence of Sweep on the 3D Shock Structure in an Axial Transonic Compressor[R]. ASME 2005-GT-68835.
[10] Hah C, Wennerstrom A J. Three-Dimensional Flow Fields Inside a Transonic Compressor with Swept Blades[J]. Journal of Turbomachinery, 1991, 113(2).
[11] Wadia A R, Law C H. Low Aspect Ratio Transonic Rotors: Part 2—Influence of Location of Maximum Thickness on Transonic Compressor Performance[J]. Journal of Turbomachinery, 1993, 115(2): 226-239.
[12] Benini E, Biollo R. On the Aerodynamics of Swept and Leaned Transonic Compressor Rotors[R]. ASME GT 2006-90547.
[13] 毛明明. 跨声速轴流压气机动叶弯和掠的数值研究[D]. 哈尔滨:哈尔滨工业大学, 2008: 25-35.
[14] 茅晓晨, 刘波, 张国臣, 等. 复合弯掠优化对跨声速压气机性能影响的研究[J]. 推进技术, 2015, 36(7). (MAO Xiao-chen, LIU Bo, ZHANG Guo-chen, et al. Effectiveness of Composite Optimization of Lean and Sweep on Transonic Compressor Performance[J]. Journal of Propulsion Technology, 2015, 36(7).)
[15] 张鹏, 刘波, 茅晓晨, 等. 三维造型和非轴对称端壁在跨声速压气机中的应用[J]. 推进技术, 2016, 37(2): 250-257. (ZHANG Peng, LIU Bo, MAO Xiao-chen, et al. Application of 3D Blading and Non-Axisymmetric Endwall in a Transonic Compressor[J]. Journal of Propulsion Technology, 2016, 37(2): 250-257.)
[16] 周正贵, 吴国钏. 串列叶栅尾迹的实验研究[J]. 南京航空航天大学学报, 1994, 26(4): 555-559.
[17] 周正贵, 吴国钏. 自由流湍流度对串列叶栅性能的影响[J]. 航空动力学报, 1996, 1(11): 1-3.
[18] Bammeert K, Staude R. New Features in the Design of Axial-Flow Compressors with Tandem Blades[R]. ASME 81-GT-113.
[19] Bammert K, Staude R. Optimization for Rotor Blades of Tandem Design for Axial Flow Compressors[R]. ASME 79-GT-125.
[20] Bammert K, Beelte H. Investigation of an Axial-Flow Compressor with Tandem Cascades[J]. Journal of Engineering for Gas Turbines & Power, 1980, 102(4): 971-977.
[21] Wu G, Zhang B, Guo B. Experimental Investigation of Tandem Blade Cascade with Double Circular Arc-Profile[R]. ASME 85-GT-94.
[22] Hiroaki, Hasegawa. Development of Highly Loaded Fan with Tandem Cascade[R]. AIAA 2003-1065.
[23] Mcglumphy J, Ng W F, Wellborn S R, et al. Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades[R]. ASME 2007-GT-43929.
[24] 赵斌, 刘宝杰. 跨声串列转子及前后排叶片匹配特性分析[J]. 航空学报, 2011, 32(6): 978-987.
[25] 赵斌, 刘宝杰. 前、后排叶片相对位置对串列转子性能的影响[J]. 推进技术, 2012, 33(1). (ZHAO Bin, LIU Bao-jie. Effects of Relative Geometry Position of Forward and Aft Blades on Performance of Tandem Rotor[J]. Journal of Propulsion Technology, 2012, 33(1).)
[26] 郭然, 贾力平, 樊小莉. NUMECA系列教程[M]. 北京:机械工业出版社, 2013.(编辑:梅瑛) * 收稿日期:2017-01-12;修订日期:2017-03-08。基金项目:国家自然科学基金(51676162);先进航空发动机协同创新中心资助。作者简介:宋召运,男,博士生,研究领域为压气机气动热力学。E-mail: szylast@126.com
|