[1] Chiaverini M J. Fundamentals of Hybrid Rocket Combustion and Propulsion[M]. USA: American Institute of Aeronautics and Astronautics, 2000.
[2] 蔡国飙. 固液混合火箭发动机技术综述与展望 [J]. 推进技术, 2012, 33(6): 831-839. (CAI Guo-biao. Development and Application of Hybrid Rocket Motor Technology: Overview and Prospect[J]. Journal of Propulsion Technology, 2012, 33(6): 831-839.)
[3] 田辉, 吴俊峰, 俞南嘉, 等. 采用N2O与含金属HTPB燃料固液火箭发动机燃速试验研究[J]. 推进技术, 2014, 35(3): 413-421. (TIAN Hui, WU Jun-feng, YU Nan-jia, et al. Experimental Research of Regression Rate of N2O and Metalized HTPB Hybrid Rocket Motor[J]. Journal of Propulsion Technology, 2014, 35(3): 413-421.)
[4] Cantwell B, Karabeyoglu A, Altman D. Recent Advances in Hybrid Propulsion [J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(4): 305-326.
[5] Paravan C, Reina A, Sossi A, et al. Time-Resolved Regression Rate of Innovative Hybrid Solid Fuel Formulations[C]. Munich: the European Conference for Aero-Space Sciences, 2013.
[6] Karabeyoglu A, Zilliac G, Cantwell B J, et al. Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels[J]. Journal of Propulsion and Power, 2004, 20(6): 1037-45.
[7] Karabeyoglu A, Zilliac G, Castellucci P, et al. Development of High-Burning-Rate Hybrid-Rocket -Fuel Flight Demonstrators [R]. AIAA 2003-5196.
[8] Karabeyoglu A, Stevens J, Geyzel D, et al. High Performance Hybrid Upper Stage Motor[R]. AIAA 2011-6025.
[9] Carmicino C, Sorge A R. The Effects of Oxidizer Injector Design on Hybrid Rockets Combustion Stability[R].AIAA 2006-4677.
[10] Sorge A R. Influence of a Conical Axial Injector on Hybrid Rocket Performance[J]. Journal of Propulsion and Power, 2006, 22(5): 984-95.
[11] Deluca L T, Rossettini L, Kappenstein C, et al. Ballistic Characterization of ALH3-Based Propellants for Solid and Hybrid Rocket Propulsion[R]. AIAA 2009-4874.
[12] Risha G, Ulas A, Boyer E, et al. Combustion of HTPB-Based Solid Fuels Containing Nano-Sized Energetic Powder in a Hybrid Rocket Motor[R]. AIAA 2001-3535.
[13] Risha G A, Boywe E, Wehrman R B. Performance Comparison of HTPB-Based Solid Fuels Containing Nano-Sized Energetic Powder in a Cylindrical Hybrid Rocket Motor[R]. AIAA 2002-3576.
[14] Risha G, Boywe E, Wehrman R, et al. Nano-Sized Aluminum and Boron-Based Solid Fuel Characterization in a Hybrid Rocket Engine [R]. AIAA 2003-4593.
[15] Deluca L, Galfetti L, Colombo G, et al. Time-Resolved burning of Solid Fuels for Hybrid Rocket Propulsion[C]. Saint Petersburg: the European Conference for Aero-space Sciences, 2011.
[16] Deluca L, Galfetti L, Maggi F, et al. Characterization of HTPB-Based Solid Fuel Formulations: Performance, Mechanical Properties, and Pollution[J]. Acta Astronautica, 2013, 92(2): 150-62.
[17] Shark S C, Zaseck C R, Pourpoint T L, et al. Performance and Flame Visualization of Dicyclopentadiene Rocket Propellants with Metal Hydride Additives[J]. Journal of Propulsion and Power, 2016, 32(4): 869-81.
[18] Karabeyoglu M A, Cantwell B J, Zilliac G. Development of Scalable Space-Time Averaged Regression Rate Expressions for Hybrid Rockets[J]. Journal of Propulsion & Power, 2015, 23(4): 737-47.
[19] Gramer D, Taagen T. Low Cost Surface Regression Sensor for Hybrid Fuels, Solid Propellants, and Ablatives [R]. AIAA 2001-3529.
[20] Chiaverini M J, Serin N, Johnson D K, et al. Regression Rate Behavior of Hybrid Rocket Solid Fuels[J]. Journal of Propulsion and Power, 2000, 16(1): 125-32.
[21] 秦钊. 固体燃料燃烧性能测试系统与HTPB基燃料的点火/燃烧特性研究 [D]. 南京:南京理工大学, 2015.
[22] 唐乐, 许志伟, 陈苏杭, 等. 固液混合推进石蜡燃料的性质及燃烧性能研究[J]. 推进技术, 2017, 38(9): 2138-2145. (TANG Yue, XU Zhi-wei, CHEN Su-hang, et al. Study on Properties and Combustion Performance of Paraffin Fuels for Hybrid Rocket Propulsion[J]. Journal of Propulsion Technology, 2017, 38(9): 2138-2145.)
[23] Gordon S, Mcbride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications[M]. USA: NASA Reference Publication, 1994.
[24] Kubota N. Propellants and Explosives: Thermochemical Aspects of Combustion[M]. Manhattan: John Wiley & Sons, 2015.
[25] Favarò F M, Sirignano W A, Manzoni M, et al. Regression Rate Modeling for Hybrid Rocket Combustion[C]. Munich: the European Conference for Aero-Space Sciences, 2013. * 收稿日期:2017-05-22;修订日期:2017-08-03。基金项目:中央高校基本科研业务费专项资金资助(30918011315)。作者简介:陈苏杭,男,博士生,研究领域为固液混合推进燃料配方设计。E-mail: chensuhang_nust@126.com通讯作者:沈瑞琪,男,博士,教授,研究领域为含能材料和化学推进技术。E-mail: rqshen@njust.edu.cn(编辑:朱立影)
|