Investigation on Thermal Characteristics of Thermionic Emission in a Hollow Cathode
1.Center for Information Geoscience,College of Resource and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;2.Shanghai Institute of Space Propulsion,Shanghai 201112,China;3.Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China
YU Bo1,2,3, YU Jian2,3, KANG Xiao-lu2,3, ZHAO Qing1. Investigation on Thermal Characteristics of Thermionic Emission in a Hollow Cathode[J]. Journal of Propulsion Technology, 2020, 41(4): 951-960.
[1] James E P, Dan M G, Ron W. Characterization of Hollow Cathode Performance and Thermal Behavior[R]. AIAA 2006-5150.
[2] Ioannis G M, Ira K, Dan M G, et al. Theoretical Model of a Hollow Cathode Insert Plasma[R]. AIAA 2004-3817.
[3] Jay P, Colleen M, Ben T, et al. Temperature Distribution in Hollow Cathode Emitters[R]. AIAA 2004-4116.
[4] Vasyl M R, Miguel C I, Iryna A P. Possible Mechanisms of the Hollow Cathode Neutralizers Destruction[R]. AIAA 2005-4240.
[5] Ira K, Ioannis G M, James E P, et al. Thermal Model of the Hollow Cathode Using Numerically Simulated Plasma Fluxes[J]. Journal of Propulsion and Power, 2007, 23(3): 522-527.
[6] Ira K, Ioannis G M, Dan M G, et al. Insert Heating and Ignition in Inert-Gas Hollow Cathodes[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2199-2206.
[7] Alexander D I, Igor G, Steve G. Thermal Profile of a Lanthanum Hexaboride Heaterless Hollow Cathode[C]. Atlanta: 35th International Electric Propulsion Conference, 2017.
[8] Drobny C, Tajmar M, Wirz R. Development of a C12A7 Electride Hollow Cathode[C]. Atlanta: 35th International Electric Propulsion Conference, 2017.
[9] Kohei K, Tatsuya K, Hisashi K, et al. 100A Class Hollow Cathode [C]. Hyogo-kobe: 34th International Electric Propulsion Conference, 2017.
[10] Robert S, Eduardo A. Accuracy Improvements in a Hall Thruster PIC/Fluid Code[C]. Denver: 45th Joint Propulsion Conference and Exhibit, 2009.
[11] Szabo J J. Fully Kinetic Numerical Modeling of a Plasma Thruster[D]. Massachusetts: Massachusetts Institute of Technology, 2001.
[12] Szabo J J, Warner N, Martinez-Sanchez M, et al. Full Particle-In-Cell Simulation Methodology for Axisymmetric Hall Effect Thrusters[J]. Journal of Propulsion and Power, 2014, 30(1): 197-208.
[13] Emmanuelle S, Michelle K A, Mark A C. Wall Erosion in 2D Hall Thruster Simulations [C]. Princeton: 29th International Electric Propulsion Conference, 2005.
[14] John T Y, Michael K, Boyd Iain D. An Investigation of Factors Involved in Hall Thruster Wall Erosion Modeling [R]. AIAA 2006-4657.
[15] Langmuir I. The Nature of Adsorbed Films of Caesium on Tungsten, Part I: The Space Charge Sheath and the Image Force[J]. Physical Review, 1933, 43(4): 224-251.
[16] 王平阳, 程惠尔, 谈和平. 半透明高温图层的内部辐射效应[J]. 推进技术, 2002, 23(1): 60-62.
[17] 林祖伦, 王小菊. 阴极电子学(第一版)[M]. 北京:国防工业出版社, 2013.