[1] Kailasanath K. Review of Propulsion Applications of Detonation Waves[J]. AIAA Journal, 2000, 38(9): 1698-1708.
[2] 王健平, 周 蕊, 武 丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25.
[3] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Effect of Combustor Geometry on Continuous Spin Detonation in Syngas-Air Mixtures[J]. Combustion Explosion and Shock Waves, 2015, 51(6): 688-699.
[4] Bykovskii F A, Zhdan S A. Current Status of Research of Continuous Detonation in Fuel-Air Mixtures[J]. Combustion Explosion and Shock Waves, 2015, 51(1): 21-35.
[5] Kindracki J, Wolanski P, Gut Z. Experimental Research on the Rotating Detonation in Gaseous Detonation in Gaseous Fuels-Oxygen Mixtures[J]. Shock Wave, 2011, 21(2): 75-84.
[6] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158.
[7] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究(I):同向传播模式[J]. 推进技术, 2014, 35(1): 138-144.
[8] 刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究(II):双波对撞传播模式[J]. 推进技术, 2014, 35(2): 269-275.
[9] Lin W, Zhou J, Liu S, et al. An Experimental Study on CH4/O2 Continuously Rotating Detonation Wave in a Hollow Combustion Chamber[J]. Experimental Thermal and Fluid Science, 2015, 62: 122-130.
[10] Wang Y H, Wang J P. Coexistence of Detonation with Deflagration in Rotating Detonation Engines[J]. International Journal of Hydrogen Energy, 2016, 41(32):14302-14309.
[11] Wang Y H, Wang J P. Effect of Equivalence Ratio on the Velocity of Rotating Detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25): 7949-7955.
[12] 郑 权, 翁春生, 白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J]. 推进技术, 2015, 36(6): 947-952.
[13] Zhdan S A, Bykovskii F A, Vedernikov E F. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture[J]. Combustion Explosion and Shock Waves, 2007, 43(4): 449-459.
[14] Davidenko D M, Gokalp I, Kudryavtsev A N. Numerical Simulation of the Continuous Rotating Hydrogen-Oxygen Detonation with a Detailed Chemical Mechanism[C]. Moscow: Proceedings of the West-East High Speed Flow Field Conference, 2007.
[15] 潘振华, 范宝春, 张旭东, 等. 连续旋转爆轰三维流场的数值模拟[J]. 兵工学报, 2012, 33(5): 594-599.
[16] Hishida M, Fujiwara T, Wolanski P. Fundamentals of Rotating Detonations[J]. Shock Waves, 2009, 19(1): 1-10.
[17] Schwer D, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[C]. Florida: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011.
[18] Eude Y, Davidenko D, Falempin F, et al. Use of the Adaptive Mesh Refinement for 3D Simulations of a CDWRE (Continuous Detonation Wave Rocket Engine) [C]. California:AIAA International Space Planes & Hypersonic Systems & Technologies Conference, 2011.
[19] Zhou R, Wang J P. Numerical Investigation of Shock Wave Reflections near the Head Ends of Rotating Detonation Engines[J]. Shock Waves, 2013, 23(5): 461-472.
[20] Braun J, Saracoglu B H, Paniagua G. Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles[J]. Journal of Propulsion and Power, 2016, 33(1): 1-10.
[21] Braun J, Saracoglu B H, Magin T E. et al. One-Dimensional Analysis of the Magnetohydro-Dynamic Effect in Rotating Detonation Combustors[J]. AIAA Journal, 2016, 54(12): 1-7.
[22] Sousa J, Braun J, Paniagua G. Development of a Fast Evaluation Tool for Rotating Detonation Combustors[J]. Applied Mathematical Modelling, 2017, 52: 42-52.
[23] Weller H G, Tabor G, Jasak H C, et al. A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques[J]. Computers in Physics, 1998, 12(6): 620-631.
[24] Florian E, Vollmer K G, Thomas S. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures[J]. Journal of Combustion, 2014, (5): 1-15.
[25] Yamada T, Hayashi A K, Yamada E, et al. Detonation Limit Thresholds in H2/O2 Rotating Detonation Engine[J]. Combustion Science and Technology, 2010, 182,(11-12).