Effects of Non-Axisymmetric Profiled End Wall Treatments on Performance of a Centrifugal Compressor
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Collaborative Innovation Center of Advanced Aero-Engine,Beijing 100191,China
LANG Jin-hua1, CHU Wu-li1,2, ZHANG Hao-guang1, AN Guang-yao1, MA Shan1. Effects of Non-Axisymmetric Profiled End Wall Treatments on Performance of a Centrifugal Compressor[J]. Journal of Propulsion Technology, 2020, 41(6): 1286-1295.
[1] 金 磊. 涡轮增压离心压气机非对称有叶扩压器扩稳机理研究[D]. 北京:清华大学, 2014.
[2] Imamura H, Kurokawa J, Matsui J, et al. Passive Control of Rotating Stall in a Parallel Wall Vaned Diffuser by J-Grooves[J]. Journal of Turbomachinery, 2001, 123(3): 507-515.
[3] Jansen J, Carter A F, Swarden M C. Improvements in Surge Margin for Centrifugal Compressors[C]. USA: AGARD Conference Proceeding, 1980.
[4] Pampreen R C, Compressor Surge and Stall[M]. Norwich: Concepts Eti, Inc., 1993.
[5] Zheng X, Liu A. Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor[J]. Journal of Turbomachinery, 2015, 137(8).
[6] Skoch G J. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability[J]. Journal of Turbomachinery, 2005, 127(1): 107-117.
[7] Marsan A, Trébinjac I, Coste S, et al. Influence of Unsteadiness on the Control of a Hub-Corner Separation Within a Radial Vaned Diffuser[R]. ASME GT 2014-26985.
[8] 席 光, 周 莉, 丁海萍, 等. 叶片扩压器进口安装角对离心压缩机性能影响的数值与实验研究[J]. 工程热物理学报, 2006, 27(1): 61-64.
[9] Spakovszky Z S, Roduner C H. Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor[J]. Journal of Turbomachinery, 2009, 131(3).
[10] Everitt J N, Spakovszky Z S. An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser[J]. Journal of Turbomachinery, 2013, 135(1): 1737-1749.
[11] 赵家毅, 王志恒, 李学臣, 等. 叶片扩压器小流量工况内部流动特性研究[J]. 工程热物理学报, 2017, 38(6): 52-58.
[12] Galloway L, Rusch D, Spence S W T, et al. An Investigation of Centrifugal Compressor Stability Enhancement Using a Novel Vaned Diffuser Recirculation Technique[J]. Journal of Turbomachinery, 2018, 140(12): 1-12.
[13] Rose M G. Non-Axisymmetric End Wall Profiling in the HPNGVs of an Axial Flow Gas Turbine[R]. ASME 94-GT-249.
[14] Hoeger M, Cardamone P, Fottner L. Influence of Endwall Contouring on the Transonic Flow in a Compressor Blade[R]. ASME GT 2002-30440.
[15] Harvey N W. Some Effects of Non-Axisymmetric End Wall Profiling on Axial Flow Compressor Aerodynamics, Part I: Linear Cascade Investigation[R]. ASME GT 2008-50990.
[16] Hergt A, Meyer R, Liesner K, et al. A New Approach for Compressor Endwall Contouring[R]. ASME GT 2011-45858.
[17] Reutter O, Hemmert-Pottmann S, Hergt A, et al. Endwall Contouring and Fillet Design for Reducing Losses and Homogenizing the Outflow of a Compressor Cascade[R]. ASME GT 2014-25277.
[18] Hergt A, Meyer R, Engel K. Effects of Vortex Generator Application on the Performance of a Compressor Cascade[J]. Journal of Turbomachinery, 2013, 135(2).
[19] 刘 波, 管继伟, 陈云永, 等. 用端壁造型减小涡轮叶栅二次流损失的数值研究[J]. 推进技术, 2008, 29(3): 355-359.
[20] 那振喆, 刘 波, 赵刚剑, 等. 基于Bezier曲线的端壁造型设计方法研究[J]. 推进技术, 2014, 35(5): 624-631.
[21] Chu W, Li X, Wu Y, et al. Reduction of End Wall Loss in Axial Compressor by Using Non-Axisymmetric Profiled End Wall: A New Design Approach Based on End Wall Velocity Modification[J]. Aerospace Science and Technology, 2016, 55: 76-91.
[22] Li X, Chu W, Wu Y. Numerical Investigation of Inlet Boundary Layer Skew in Axial-Flow Compressor Cascade and the Corresponding Non-Axisymmetric End Wall Profiling[J]. Journal of Power Energy, 2014, 228(6): 638-656.
[23] Li X, Chu W, Wu Y, et al. Effective End Wall Profiling Rules for a Highly Loaded Compressor Cascade[J]. Journal of Power Energy, 2016, 230(6).
[24] Ziegler K U, Gallus H E, Niehuis R, et al. A Study on Impeller-Diffuser Interaction, Part I: Influence on the Performance[J]. Journal of Turbomachinery, 2003, 125(1).
[25] Ziegler K U, Gallus H E, Niehuis R. A Study on Impeller-Diffuser Interaction, Part II: Detailed Flow Analysis[J]. Journal of Turbomachinery, 2003, 125(1).
[26] Bourgeois J A, Martinuzzi R J, Savory E, et al. Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor[J]. Journal of Turbomachinery, 2011, 133(1).
[27] Benichou E, Trébinjac I. Numerical Analysis of an Alternate Stall in a Radial Vaned Diffuser[R]. ASME GT 2016-56485.
[28] Sivagnanasundaram S, Spence S, Early J. Map Width Enhancement Technique for a Turbocharger Compressor[J]. Journal of Turbomachinery, 2014, 136(6).
[29] Gibson L, Galloway L, Kim S I, et al. Assessment of Turbulence Model Predictions for a Centrifugal Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation[J]. Journal of Global Power and Propulsion Society, 2017, 1: 142-156.
[30] 田兴江, 常海萍, 张镜洋, 等. 基于参数化脊线的非轴对称端壁成型方法[J]. 推进技术, 2017, 38(6): 100-107.
[31] Dorfner C , Hergt A , Nicke E , et al. Advanced Non-Axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator, Part I :Principal Cascade Design and Compressor Application[J]. Journal of Turbomachinery, 2009, 133(2): 113-120.
[32] Li X, Spence S, Wu Y. The Interaction Between Inlet Guide Vanes and the Impeller Recirculating Flow in a Centrifugal Compressor and the Resulting Impact on Flow Range[R]. ASME GT 2018-75097.
[33] 郎进花, 楚武利, 安光耀, 等. 跨声速轴流压气机的失速发展机理[J]. 航空动力学报, 2018, 33(8):1964-1973.
[34] Choi M, Vahdati M, Imregun M. Effects of Fan Speed on Rotating Stall Inception and Recovery[J]. Journal of Turbomachinery, 2011, 133(4): 1396-1402.