LI Jian-peng, LI Xing-da, ZHANG Xing-min, ZHAO Yi-de, LI Juan, GUO De-zhou, HU-Jing. Experimental Study on Beam Current Regulation of Diverse Propellant Types for RF Ion Thruster[J]. Journal of Propulsion Technology, 2020, 41(8): 1914-1920.
[1] 杨福全, 王 蒙, 郑茂繁, 等. 10cm离子推力器放电室性能优化研究[J]. 推进技术, 2017, 38(1): 241-246.
[2] Goebel D M, Katz I. Fundamentals of Electric Propulsion:Ion and Hall Thrusters[M]. Hoboken: John Wiley and Sons, 2008.
[3] Ahmed L N, Crofton M W. Surface Modification Measurements in the T5 Ion Thruster Plume[J]. Journal of Propulsion and Power, 1998, 14(3): 336-347.
[4] Loeb H W, Schartner K H, Meyer B K, et al. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development[C]. Princeton University: the 29th International Electric Propulsion Conference, 2005.
[5] Killinger R, Leiter H, Kukies R. RITA Ion Propulsion Systems for Commercial and Scientific Applications[R]. AIAA 2007-5200.
[6] Feili D, Loeb H W, Schartner K H, et al. Testing of New μN-RITs at Giessen[R]. AIAA 2005-4263.
[7] Killinger R, Bassner H. High Performance RF-Ion Thruster Development(RIT XT)-Performance and Durability Test Results[R]. AIAA 2001-3488.
[8] Dobkevicius M, Feili D. Multiphysics Model for Radio Frequency Gridded Ion Thruster Performance[J]. Journal of Propulsion and Power, 2017, 33(4): 939-953.
[9] Goebel D M. Analytical Discharge Model for RF Ion Thruste[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2111-2121.
[10] Mouchtouris S, Kokkoris G. Multiscale Modeling of Low Pressure Plasma Etching Processes: Linking the Operating Parameters of the Plasma Reactor with Surface Roughness Evolution[J]. Plasma Processes and Polymers, 2017, 14(4).
[11] Chabert P, Monreal J A, Bredin J, et al. Global Model of a Gridded-Ion Thruster Powered by a Radio Frequency Inductive Coil[J]. Physics of Plasmas, 2012, 19(7).
[12] Volkmar C, Ricklefs U. Implementation and Verification of a Hybrid Performance and Impedance Model of Gridded Radio-Frequency Ion Thrusters[J]. European Physical Journal D, 2015, 69(10).
[13] Kawamura E, Graves D B, Lieberman M A. Fast 2D Hybrid Fluid-Analytical Simulation of Inductive/Capacitive Discharges[J]. Plasma Sources Science and Technology, 2011, 20(3): 1-12.
[14] Godyak V. Ferromagnetic Enhanced Inductive Plasma Sources[J]. Journal of Physics D: Applied Physics, 2013, 46(28): 1-23.
[15] Godyak V A, Piejak R B, Alexandrovich B M. Experimental Evidence of Collisionless Power Absorption in Inductively Coupled Plasma[J]. Physical Review Letters, 1998, 80(15): 3264-3267.
[16] Turner M M. Collisionless Electron Heating in an Inductively Coupled Discharge[J]. Physical Review Letters, 1993, 71(12): 1844-1847.
[17] Antropov N N, Akhmetzhanov R V, Bogatyy A V, et al. Experimental Research of Radio-Frequency Ion Thruster[J]. Thermal Engineering, 2015, 63(13): 957-963.
[18] Kokal U, Turan N, Celik M. Design Improvements and Experimental Measu-Rements of BURFIT-80 RF Ion Thruster[R]. AIAA 2017-4891.
[19] 贺建武, 马隆飞, 薛森文, 等. 小型感性耦合射频等离子体中和器的实验研究[J]. 推进技术, 2018, 39(7): 1673-1680.
[20] 吴辰宸, 孙新锋, 顾 左, 等. 射频离子推力器放电与引出特性调节规律仿真与试验研究[J]. 推进技术, 2019, 40(1): 233-240.
[21] 夏广庆, 徐宗琦, 王 鹏, 等. 无中和器射频离子推力器原理研究[J]. 中国空间科学技术, 2016, 36(1): 1-8.
[22] 杨 涓, 何洪庆, 毛根旺, 等. 微波等离子推力器真空环境工作的微波源研制[J]. 推进技术, 2004, 25(3): 259-262.
[23] 杨 涓, 杨铁链, 许映乔, 等. 同轴型微波等离子推力器磁场效应[J]. 推进技术, 2009, 30(1): 108-113.