ZHAO Jin-jie, LEI Zhi-liang, BAO Ze-wei, ZHU Quan, LI Xiang-yuan. Pyrolysis and Coking Deposition of Aviation Kerosene under Supercritical Conditions in S-Bend Tubes[J]. Journal of Propulsion Technology, 2021, 42(3): 692-700.
[1] 章思龙, 秦 江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 23-36.
[2] Zhu Y H, Peng W, Xu R N, et al. Review on Active Thermal Protection and Its Heat Transfer for Airbreathing Hypersonic Vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953.
[3] 黄世璋, 朱强华, 高效伟. 碳氢燃料在波纹管内的超临界裂解传热特性[J]. 推进技术, 2019, 40(1): 101-112.
[4] Pu H, Li S F, Dong M, et al. Convective Heat Transfer and Flow Resistance Characteristics of Supercritical Pressure Hydrocarbon Fuel in a Horizontal Rectangular Mini-channel[J]. Experimental Thermal and Fluid Science, 2019, 108: 39-53.
[5] 潘 辉, 冯 松, 刘朝晖, 等. 航空煤油RP-3热裂解结焦流动换热特性实验研究[J]. 西安交通大学学报, 2016, 50(7): 7-12.
[6] Wang X H, Song Q S, Wu Y, et al. Modelling and Numerical Simulation of n-Heptane Pyrolysis Coking Characteristics in a Millimetre-Sized Tube Reactor[J]. Combustion and Flame, 2019, 201: 44-56.
[7] Stewart J, Brezinsky K, Glassman I. Supercritical Pyrolysis of Decalin, Tetralin, and n-Decane at 700~800K. Product Distribution and Reaction Mechanism[J]. Combustion Science and Technology, 1998, 136(1): 373-390.
[8] 周 灏, 毛 佳, 汪必耀, 等. 正癸烷与二甲苯在超临界压力下的热裂解[J]. 物理化学学报, 2013, 29(4): 689-694.
[9] Zhang D R, Hou L Y, Gao M Y, et al. Experiment and Modeling on Thermal Cracking of n-Dodecane at Supercritical Pressure[J]. Energy & Fuels, 2018, 32(12): 12426-12434.
[10] 闫 帅, 祝银海, 赵 然, 等. 超临界压力下正癸烷在多孔介质中结焦实验研究[J]. 推进技术, 2018, 39(4): 935-941.
[11] Liu Z H, Bi Q C, Feng J. Evaluation of Heat Sink Capability and Deposition Propensity of Supercritical Endothermic Fuels in a Minichannel[J]. Fuel, 2015, 158: 388-398.
[12] Sun X, Xu K K, Meng H. Supercritical Pressure Heat Transfer, Pyrolytic Reactions, and Surface Coking of n-Decane in Helical Tubes[J]. Energy & Fuels, 2018, 32(12): 12298-12307.
[13] Zhong F Q, Fan X J, Yu G, et al. Thermal Cracking of Aviation Kerosene for Scramjet Applications[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2644-2652.
[14] Liu G Z, Wang X Q, Zhang X W. Pyrolytic Depositions of Hydrocarbon Aviation Fuels in Regenerative Cooling Channels[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 384-395.
[15] 赵国柱, 宋文艳, 张若凌. 超临界压力下RP-3航空煤油吸热裂解反应的数值研究[J]. 航空学报, 2014, 35(6): 1513-1521.
[16] 王英杰, 徐国强, 邓宏武, 等. 进口温度影响航空煤油结焦特性实验[J]. 航空动力学报, 2009, 24(9): 1972-1976.
[17] Tao Z, Fu Y C, Xu G Q, et al. Experimental Study on Influences of Physical Factors to Supercritical RP-3 Surface and Liquid-Space Thermal Oxidation Coking[J]. Energy & Fuels, 2014, 28(9): 6098-6106.
[18] Jin B, Jing K, Liu J, et al. Pyrolysis and Coking of Endothermic Hydrocarbon Fuel in Regenerative Cooling Channel under Different Pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 117-126.
[19] 吴 瀚, 邓宏武, 徐国强, 等. 流动方式对航空煤油RP-3结焦的影响[J]. 航空动力学报, 2011, 26(6): 1341-1345.
[20] 姬鹏飞, 张净玉, 袁 策, 等. 航空煤油RP-3结焦产物的物性[J]. 航空动力学报, 2018, 33(8): 1880-1885.
[21] 朱玉红, 余彩香, 李子木, 等. 航空燃料超临界热裂解过程中焦炭的形成[J]. 石油化工, 2006, 35(12): 1151-1155.
[22] 杨彩华, 汪旭清, 刘国柱, 等. 冷却通道预氧化处理抑制碳氢燃料热裂解结焦的研究[J]. 推进技术, 2014, 35(2): 262-268.
[23] 刘志琦. 超燃冲压发动机主动冷却通道内的超临界流动与传热过程数值模拟[D]. 长沙:国防科学技术大学, 2015.
[24] 赵国柱. 超临界态碳氢燃料吸热流动的三维计算研究[D]. 绵阳:中国空气动力研究与发展中心, 2010.
[25] 陈 玉. 发动机多通道燃料冷却数值模拟研究[D]. 成都: 四川大学, 2019.
[26] 裴鑫岩. 航空煤油超临界换热与氧化结焦理论与实验研究[D]. 北京:清华大学, 2016.
[27] Liang J H, Liu Z Q, Pan Y. Coupled Heat Transfer of Supercritical n-Decane in a Curved Cooling Channel[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3): 635-641.
[28] Fu Y C, Wen J, Tao Z, et al. Experimental Research on Convective Heat Transfer of Supercritical Hydrocarbon Fuel Flowing Through U-Turn Tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55.
[29] Pei X Y, Hou L Y. Secondary Flow and Oxidation Coking Deposition of Aviation Fuel[J]. Fuel, 2016, 167: 68-74.
[30] Li X F, Zhong F Q, Fan X J, et al. Study of Turbulent Heat Transfer of Aviation Kerosene Flows in a Curved Pipe at Supercritical Pressure[J]. Applied Thermal Engineering, 2010, 30(13): 1845-1851.
[31] 黄 文, 邓宏武, 徐国强, 等. U型管内超临界压力航空煤油压降特性[J]. 航空动力学报, 2011, 26(3): 582-587.
[32] Zhang C B, Xu G Q, Gao L, et al. Experimental Investigation on Heat Transfer of a Specific Fuel (RP-3) Flows Through Downward Tubes at Supercritical Pressure[J]. Journal of Supercritical Fluids, 2012, 72: 90-99.
[33] 张 斌, 张春本, 邓宏武, 等. 超临界压力下碳氢燃料在竖直圆管内换热特性[J]. 航空动力学报, 2012, 27(3): 595-603.
[34] Zhang J Z, Lin J P, Huang D, et al. Numerical Study of Heat Transfer Characteristics of Downward Supercritical Kerosene Flow Inside Circular Tubes[J]. Journal of Zhejiang University-Science A, 2018, 19(2): 158-170.
[35] 张枭雄, 侯凌云, 莫崇康, 等. 航空煤油热裂解结焦实验[J]. 航空动力学报, 2017, 32(6): 1307-1312.
[36] Zhou W X, Jia Z J, Qin J, et al. Experimental Study on Effect of Pressure on Heat Sink of n-Decane[J]. Chemical Engineering Journal, 2014, 243: 127-136.
[37] Liu Z H, Pan H, Feng S, et al. Dynamic Behaviors of Coking Process During Pyrolysis of China Aviation Kerosene RP-3[J]. Applied Thermal Engineering, 2015, 91: 408-416.