CHEN Lei, JIA Hui-ming, WANG Ge, LI De-jian, GUAN Ben. Performance Study on Flexible-Extendible Nozzle Based on Bidirectional Fluid-Solid Coupling Method[J]. Journal of Propulsion Technology, 2021, 42(3): 513-521.
[1] Hagemann G, Immich H, Nguyen T V, et al. Advanced Rocket Nozzles[J]. Journal of Propulsion and Power, 1998, 14(5): 620-634.
[2] Taylor N, Steelant J, Bond R. Experimental Comparison of Dual Bell and Expansion Deflection Nozzles[R]. AIAA 2011-5688.
[3] Horn M, Fisher S. Dual-Bell Altitude Compensating Nozzles[R]. Pennsylvania:NASA Propulsion Engineering Research Center, 1993: 140-147.
[4] 马宏瑞, 张扬军, 郑孟伟, 等. 双钟型喷管高度补偿特性的数值分析[J]. 推进技术, 2003, 24(6): 505-508.
[5] 琚春光, 刘 宇, 韩 非. 塞式喷管性能损失分析[J]. 北京航空航天大学学报, 2005, 31(11): 1222-1225.
[6] 王一白, 覃粒子, 刘 宇, 等. 高度补偿喷管的氢氧热试研究[J]. 航空动力学报, 2007, 22(2): 316-322.
[7] Mcparland G G, Bennett D R, Coon J W, et al. Integrated Stage Concept System Study Results[R]. AIAA 86-1581.
[8] 李明肤. 膨胀偏流喷管的性能研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
[9] 张 琦, 李明肤, 张 莹, 等. 分散式膨胀偏流喷管高空补偿性能分析[C]. 大连:中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017.
[10] 张 琦, 李明肤, 王 革, 等. 膨胀偏流喷管高度补偿机制数值研究[J]. 推进技术, 2019, 40(1): 44-52.
[11] Baker W, Brown S. Design Features and Current Status of a Uniquely Packaged, Variable Area Ratio Extendible Exit Cone[R]. AIAA 82-1186.
[12] Sterbentz W H, Leissler L A. Investigation of a Translating-Cone Inlet at Mach Numbers from 1.5 to 2.0[J]. Procedia Engineering, 1954, 123(4): 606-614.
[13] Ellis R A. A Step Toward Automation of Nozzle Design[R]. AIAA 69-975.
[14] Sato M, Moriya S, Tadano M, et al. Experimental Study on Transitional Phenomena of Extendible Nozzle[R]. AIAA 2007-5471.
[15] Sato M, Kimura T, Moriya S, et al. Experimental and Numerical Study on Performance of Extendible Nozzle for Altitude Compensation[R]. AIAA 2008-5235.
[16] Massimo F. Assessment and Benchmarking of the Extendible Nozzle Systems in the Liquid Propulsion[R]. AIAA 2012-4163.
[17] You J F, Zhang D O, Ouyang Q B, et al. Study on the Possibility of the Application of Metal Matrix Composites on Extendible Exit Cone Nozzles[J]. Key Engineering Materials, 2007, 351:248-253.
[18] Paul R G, Peter G V. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines[R]. AIAA 2017-5064.
[19] 韩丽霞, 田维平, 乐发仁, 等. 固体发动机喷管延伸锥展开前级间分离的热环境分析[J]. 固体火箭技术, 2004, 27(1): 12-15.
[20] 白宏伟, 尤军峰, 张 铎, 等. 级间热分离条件下带有延伸喷管的固体火箭发动机尾部流场分析[J]. 固体火箭技术, 2008, 31(6): 595-598.
[21] 尤军峰, 校金友, 张 铎, 等. 固体火箭发动机延伸喷管展开动力学分析[J]. 推进技术, 2008, 29(1): 37-42.
[22] 席俊波, 张 铎, 尤军锋. 可抛式延伸喷管的瞬态温度场和热应力分析计算[J]. 弹箭与制导学报, 2006, 26(5): 239-241.
[23] 王 锟, 蔡 强, 蔡体敏, 等. 可抛式延伸喷管展开过程运动与动力学仿真[J]. 固体火箭技术, 2010, 33(1).
[24] Baker W H. A Practical Guide to Extendible Exit Cone/EEC/Selection and Design[R]. AIAA 80-1298.
[25] 宋学官, 蔡 林, 张 华. ANSYS流固耦合分析与工程实例[M]. 北京:中国水利水电出版社, 2011.