Characteristics of Flame Transition from Laminar to Deflagration in a Sub-Millimeter Space
1.Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China;2.CAS Key Laboratory of Renewable Energy,Chinese Academy of Sciences,Guangzhou 510640,China;3.University of Chinese Academy of Sciences,Beijing 100049,China
SU Hang1,2,3, HUO Jie-peng1,2,3, WANG Xiao-han1,2, JIANG Li-qiao1,2, ZHAO Dai-qing1,2. Characteristics of Flame Transition from Laminar to Deflagration in a Sub-Millimeter Space[J]. Journal of Propulsion Technology, 2020, 41(10): 2302-2307.
[1] Fu K, Knobloch A J, Martinez F C, et al. Design and Fabrication of a Silicon-Based MEMS Rotary Engine [C]. New York: Proceedings of the 2001 International Mechanical Engineering Congress and Exposition (IMECE), 2001.
[2] Fernandez-Pello A C. Micropower Generation Using Combustion: Issues and Approaches[J]. Proceedings of the Combustion Institute, 2002, 29(1): 883-899.
[3] Zhang K, Chou S, Ang SS. MEMS-Based Solid Propellant Microthruster Design, Simulation, Fabrication, and Testing[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 165-175.
[4] 范爱武, 姚 洪, 刘 伟. 微小尺度燃烧[M]. 北京: 科学出版社, 2012.
[5] 薛 元, 陈剑波, 姚 强. 超微型燃烧器的研究现状及进展 [J]. 燃气轮机技术, 2002, 15(1): 22-26.
[6] Daou J, Matalon M. Influence of Conductive Heat-Losses on the Propagation of Premixed Flames in Channels [J]. Combustion and Flame, 2002, 128(4): 321-339.
[7] Jang H J, Jang G M, Kim N I. Unsteady Propagation of Premixed Methane/Propane Flames in a Mesoscale Disk Burner of Variable-Gaps[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1861-1868.
[8] Kagan L, Gordon P, Sivashinsky G. An Asymptotic Study of the Transition from Slow to Fast Burning in Narrow Channels[J]. Proceedings of the Combustion Institute, 2015, 35(1): 913-920.
[9] Wu M H, Burke M P, Son S F, et al. Flame Acceleration and the Transition to Detonation of Stoichiometric Ethylene/Oxygen in Microscale Tubes[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2429-2436.
[10] Wu M H, Lu T H. Development of a Chemical Microthruster Based on Pulsed Detonation[J]. Journal of Micromechanics and Microengineering, 2012, 22(10).
[11] 何建男, 范 玮, 马鹏飞, 等. 悬摆法测量微尺度光滑管内爆震冲量的实验研究[J]. 推进技术, 2016, 37(2): 393-400.
[12] 何建男, 范 玮, 肖 强, 等. 六毫米内径管道中的单次爆震实验研究 [J]. 推进技术, 2014, 35(12): 1722-1728.
[13] Pan Z, Chen K, Pan J, et al. An Experimental Study of the Propagation Characteristics for a Detonation Wave of Ethylene/Oxygen in Narrow Gaps[J]. Experimental Thermal and Fluid Science, 2017, 88: 354-360.
[14] 苏 航, 蒋利桥, 曹海亮, 等. 微型定容燃烧腔内丙烷/空气火焰传播特性 [J]. 内燃机学报, 2016, 34(3): 268-273.
[15] 苏 航, 蒋利桥, 曹海亮, 等. 微型定容燃烧腔内C2~C4烷烃/空气火焰传播[J]. 化工学报, 2016, 67(11): 4574-4579.
[16] 苏 航, 蒋利桥, 曹海亮, 等. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验 [J]. 爆炸与冲击, 2018, 38(2): 381-389.
[17] Huo J, Su H, Jiang L, et al. Numerical Study on the Propagation of Premixed Flames in Confined Narrow Disc-Shape Chambers[J]. Combustion Science and Technology, 2019, 191(8): 1380-1404.
[18] Jiang L, Su H, Huo J, et al. Experimental Study on Propane/Air Flame Propagation Characteristics in a Disc-Like Gap Chamber[J]. Combustion Science and Technology, 2019, 191(7): 1168-1183.
[19] 汤成龙. 氢气/气体燃料层流燃烧特性及液滴碰撞动力学基础研究 [D]. 西安:西安交通大学, 2011.
[20] Law C K. Combustion Physics[M]. Cambridge: Cambridge University Press, 2010.
[21] Thomas G, Bambrey R, Brown C. Experimental Observations of Flame Acceleration and Transition to Detonation Following Shock-Flame Interaction[J]. Combustion Theory and Modelling, 2001, 5(4): 573-594.
[22] Gamezo V N, Khokhlov A M, Oran E S. Effects of Wakes on Shock-Flame Interactions and Deflagration-to-Detonation Transition[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2803-2808.
[23] Kristoffersen K, Vaagsaether K, Bjerketvedt D, et al. Propane-Air Pipe Explosion Experiments Data for Estimation of 1-D Burning Velocity in Slow Regimes[J]. Experimental Thermal and Fluid Science, 2004, 28(7): 723-728.