Research on Effects of Inlet Flow Rate on Flow Resistance Characteristics of Tubeless Vortex Reducer
Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
XIA Zi-long1, WANG Suo-fang1. Research on Effects of Inlet Flow Rate on Flow Resistance Characteristics of Tubeless Vortex Reducer[J]. Journal of Propulsion Technology, 2020, 41(6): 1276-1285.
[1] Brown W M, Manente J C. Compressor Bleed System[P]. US: 4008977, 1977-02-22.
[2] Hide R. On Source-Sink Flows in a Rotating Fluid[J]. Journal of Fluid Mechanics, 1968, 32(4): 737-764.
[3] Chew J W, Owen J M, Pincombe J R. Numerical Predictions for Laminar Source-Sink Flow in a Rotating Cylindrical Cavity[J]. Journal of Fluid Mechanics, 1984, 143(1): 451-466.
[4] Firouzian M, Owen J M, Pincombe J R, et al. Flow and Heat Transfer in a Rotating Cavity with a Radial Inflow of Fluid, Part 1: The Flow Structure[J]. International Journal of Heat and Fluid Flow, 1985, 6(4): 228-234.
[5] Firouzian M, Owen J M, Pincombe J R, et al. Flow and Heat Transfer in a Rotating Cylindrical Cavity with a Radial Inflow of Fluid, Part 2: Velocity, Pressure and Heat Transfer Measurements[J]. International Journal of Heat and Fluid Flow, 1986, 7(1): 21-27.
[6] Chew J W, Snell R J. Prediction of the Pressure Distribution for Radial Inflow Between Co-Rotating Discs[R]. ASME 88-GT-61.
[7] Brillert D, Reichert A W, Simon H. Calculation of Flow Losses in Rotating Passages of Gas Turbine Cooling Systems[R]. ASME 99-GT-251.
[8] Brillert D, Lieser D, Reichert A W, et al. Total Pressure Losses in Rotor Systems with Radial Inflow[R]. ASME 2000-GT-0283.
[9] Kumar B G V, Chew J W, Hills N J. Rotating Flow and Heat Transfer in Cylindrical Cavities with Radial Inflow[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(2).
[10] Onori M, Amirante D, Hills N J, et al. LES Validation for a Rotating Cylindrical Cavity with Radial Inflow[R]. ASME GT 2016-56393.
[11] Amirante D, Sun Z, Chew J W, et al. Modeling of Compressor Drum Cavities with Radial Inflow[R]. ASME GT 2016-56505.
[12] Farthing P R, Chew J W, Owen J M. The Use of Deswirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity with a Radial Inflow[J]. Journal of Turbomachinery, 1991, 113(1): 106-114.
[13] Farthing P R, Owen J M. De-Swirled Radial Inflow in a Rotating Cavity[J]. International Journal of Heat & Fluid Flow, 1991, 12(1): 63-70.
[14] Pfitzner M, Waschka W. Development of an Aeroengine Secondary Air System Employing Vortex Reducers[C]. Harrogate: 22nd ICAS Congress, 2000.
[15] Peitsch D, Stein M, Hein S, et al. Numerical Investigation of Vortex Reducer Flows in the High Pressure Compressor of Modern Aeroengines[R]. ASME 2002-GT-30674.
[16] Günther A, Uffrecht W, Kaiser E, et al. Experimental Analysis of Varied Vortex Reducer Configurations for the Internal Air System of Jet Engine Gas Turbines[R]. ASME GT 2008-50738.
[17] Negulescu D, Pfitzner M. Secondary Air Systems in Aeroengines Employing Vortex Reducers[R]. ASME 2001-GT-0198.
[18] May D, Chew J W, Scanlon T J. Prediction of Deswirled Radial Inflow in Rotating Cavities with Hysteresis[J]. Journal of Turbomachinery, 2013, 135(4).
[19] 黄爱霞, 王锁芳. 反旋进气盘腔内流动与换热的数值模拟[J]. 航空动力学报, 2008, 23(9): 1684-1688.
[20] 杨守辉, 王锁芳. 不同去旋角度进气共转盘腔内流动与换热研究[J]. 航空发动机, 2011, 37(6): 17-20.
[21] 张光宇, 王锁芳, 夏子龙, 等. 喷嘴结构对去旋系统减阻特性影响的数值研究[J]. 推进技术, 2018, 39(5): 979-985.
[22] Luo X, Feng A, Quan Y, et al. Experimental Analysis of Varied Vortex Reducers in Reducing the Pressure Drop in a Rotating Cavity with Radial Inflow[J]. Experimental Thermal and Fluid Science, 2016, 77: 159-166.
[23] Friedl W, Peitsch D, Negulescu D. Improvement of High Pressure Turbine Air Systems by De-Swirl Nozzles[C]. Montreal:ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
[24] 呼艳丽, 郭 文, 王 蕾, 等. 反旋喷嘴进气旋转盘腔压力损失特性[J]. 航空动力学报, 2016, 31(8): 1866-1873.