Effects of Leading Edge Injection on the Film Cooling Characteristics of Multirow Cooling Holes on the Turbine Vane Suction Side
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China;2.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Northwestern Polytechnical University, Xi’an 710129,China;3.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
YAO Chun-yi1, ZHU Hui-ren1,2, LI Xin-lei1, LIU Cun-liang1,2, GUO Wen3, LIU Song3, LI Shi-feng3. Effects of Leading Edge Injection on the Film Cooling Characteristics of Multirow Cooling Holes on the Turbine Vane Suction Side[J]. Journal of Propulsion Technology, 2021, 42(3): 620-629.
[1] Han J C, Dutta S, Ekkad S. Gas Turbine Heat Transfer and Cooling Technology[M]. Boca Raton:CRC press, 2012.
[2] Bunker R S. A Review of Shaped Hole Turbine Film-Cooling Technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453.
[3] Ekkad S, Han J C. A Review of Hole Geometry and Coolant Density Effect on Film Cooling[R]. ASME HT 2013-17250.
[4] Muska J F, Fish R W, Suo M. The Additive Nature of Film Cooling from Rows of Holes[J]. Journal of Engineering for Power, 1976, 98(4): 457-463.
[5] Sellers J P. Gaseous Film Cooling with Multiple Injection Stations[J]. AIAA Journal, 1963, 1(9): 2154-2156.
[6] Takeishi K, Aoki S, Sato T, et al. Film Cooling on a Gas Turbine Rotor Blade[J]. Journal of Turbomachinery, 1992, 114(4): 828-834.
[7] Polanka M D, Ethridge M I, Cutbirth J M, et al. Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes[R]. ASME 2000-GT-240.
[8] Cutbirth J M, Bogard D G. Evaluation of Pressure Side Film Cooling with Flow and Thermal Field Measurements, Part I: Showerhead Effects[J]. Journal of Turbomachinery, 2002, 124(4): 670-677.
[9] Cutbirth J M, Bogard D G. Evaluation of Pressure Side Film Cooling with Flow and Thermal Field Measurements—Part II: Turbulence Effects[J]. Journal of Turbomachinery, 2002, 124(4): 678-685.
[10] Schneider M, Parneix S, von Wolfersdorf J. Effect of Showerhead Injection on Superposition of Multi-Row Pressure Side Film Cooling with Fan Shaped Holes[R]. ASME GT 2003-38693.
[11] Ou S, Han J C. Influence of Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer Through Two Rows of Inclined Film Slots[J]. Journal of Turbomachinery, 1992, 114(4): 724-733.
[12] Ekkad S V, Han J C, Du H. Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density[J]. Journal of Turbomachinery, 1998; 120(4): 799-807.
[13] Lu Y, Allison D, Ekkad S V. Turbine Blade Showerhead Film Cooling: Influence of Hole Angle and Shaping[J]. International Journal of Heat and Fluid flow, 2007, 28(5): 922-931.
[14] 付仲议, 朱惠人, 姚春意, 等. 亚声速涡轮导叶前缘气膜冷却特性实验研究[J]. 推进技术, 2019, 40(3): 583-592.
[15] Nasir S, Bolchoz T, Ng W F, et al. Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade[J]. Journal of Turbomachinery, 2012, 134(5).
[16] Xue S, Newman A, Ng W, et al. Heat Transfer Performance of a Showerhead and Shaped Hole Film Cooled Vane at Transonic Conditions[J]. Journal of Turbomachinery, 2013, 135(3).
[17] Najafabadi H N, Karlsson M, Kinell M, et al. Film-Cooling Performance of a Turbine Vane Suction Side: The Showerhead Effect on Film-Cooling Hole Placement for Cylindrical and Fan-Shaped Holes[J]. Journal of Turbomachinery, 2015, 137(9).
[18] Elnady T, Hassan I, Kadem L, et al. Experimental Investigation of Double Rows Film Cooling on Vane Pressure Side[C]. Houston: ASME 2012 International Mechanical Engineering Congress and Exposition, 2012.
[19] 刘 聪, 朱惠人, 付仲议, 等. 涡轮动叶压/吸力面气膜孔冷却特性实验研究[J]. 推进技术, 2016, 37(3): 511-519.
[20] 朱惠人, 成文娟, 李红才. 短周期风洞叶栅瞬态换热实验数据处理[J]. 航空动力学报, 2011, 26(6): 1301-1309.
[21] 倪 阳. 气冷涡轮叶片冷却效果多学科耦合分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[22] 赵 丹, 刘存良, 朱惠人, 等. 涡轮叶片前缘对冲孔排气膜冷却特性的数值研究[J]. 航空动力学报, 2017, (11): 2609-2618.
[23] Xue S, Ng W, Ekkad S, et al. The Performance of Fan-Shaped Hole Film Cooling on a Gas Turbine Blade at Transonic Condition with High Freestream Turbulence[R]. AIAA 2012-0368.
[24] Describing the Uncertainties in Experimental Results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[25] 李红才, 朱惠人, 任战鹏, 等. 短周期跨声速风洞叶栅换热实验验证[J]. 西安交通大学学报, 2013, 47(9): 49-54.
[26] Nasir S, Carullo J S, Ng W F, et al. Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade[J]. Journal of Turbomachinery, 2009, 131(2).
[27] Qin Y M, Chen P T, Ren J, et al. Effects of Wall Curvature and Streamwise Pressure Gradient on Film Cooling Effectiveness[J]. Applied Thermal Engineering, 2016, 107: 776-784.
[28] Ames F E. The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer[J]. Journal of Turbomachinery, 1997, 119(1): 23-30.
[29] Sen B, Schmidt D L, Bogard D G. Film Cooling with Compound Angle Holes: Heat Transfer[J]. Journal of Turbomachinery, 1996, 118(4): 800-806.
[30] Albert J E, Bogard D G, Cunha F. Adiabatic and Overall Effectiveness for a Film Cooled Blade[R]. ASME GT 2004-53998.
[31] Dees J E, Bogard D G, Ledezma G A, et al. Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane[J]. Journal of Turbomachinery, 2013, 135(5).
[32] Mouzon B D, Albert J E, Terrell E J, et al. Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge[R]. ASME GT 2005-69002.
[33] Chavez K, Slavens T N, Bogard D. Effects of Internal and Film Cooling on the Overall Effectiveness of a Fully Cooled Turbine Airfoil with Shaped Holes[R]. ASME GT 2016-57992.