Effects of Density Ratio and Mass Flow Rate Ratio on Vane Full Coverage Film Cooling Characteristics in Fan-Shaped Cascade Tunnel
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Northwestern Polytechnical University, Xi’an 710072,China
ZHANG Bo-lun1, ZHU Hui-ren1,2, LIU Cun-liang1,2, YAO Chun-yi1, WANG Ya-zhou1. Effects of Density Ratio and Mass Flow Rate Ratio on Vane Full Coverage Film Cooling Characteristics in Fan-Shaped Cascade Tunnel[J]. Journal of Propulsion Technology, 2021, 42(5): 1103-1111.
[1] 林宏镇, 汪火光, 蒋章焰. 高性能航空发动机传热技术[M]. 北京: 国防工业出版社, 2005.
[2] Bunker R S. Evolution of Turbine Cooing[R]. ASME GT 2017-63205.
[3] Yuen C H N, Martinez-Botas R F. Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow, Part I: Effectiveness[J]. International Journal of Heat & Mass Transfer, 2003, 46(2): 221-235.
[4] Goldstein R J, Eckert E R. Film Cooling with Injection Through Holes: Adiabatic Wall Temperature Downstream of a Circular Hole[J]. ASME Journal of Engineering for Power, 1968, 90(2): 384-395.
[5] Eriksen V L. Filming Cooling Effectiveness and Heat Transfer with Injection Through Holes[R]. NASA-CR-72991, 1971.
[6] Leylek J H, Zerkle R D. Discrete-Jet Film Cooling: A Comparison of Computational Results with Experiments[J]. Journal of Turbomachinery, 1994, 116(3).
[7] Yuen C H N, Martinez-Botas R F. Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow, Part I: Effectiveness[J]. International Journal of Heat & Mass Transfer, 2003, 46(2): 221-235.
[8] Goldstein R J. Film Cooling[J]. Advances in Heat Transfer, 1971, 7(1): 321-379.
[9] Goldstein R J, Echert E R, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. Journal of Heat and Mass Transfer, 1974, 17: 595-607.
[10] Zhu H R, Xu D C, Guo T, et al. Effects of Film Cooling Hole Shape on Heat Transfer[J]. Heat Transfer-Asian Research, 2004, 33(2): 73-80.
[11] Gritsch M, Schulz A, Wittig S. Discharge Coefficient Measurements of Film Cooling Holes with Expanded Exits[J]. ASME Journal of Turbomachinery, 1998, 120: 557-563.
[12] Liu C L, Zhu H R, Wu A S, et al. Experimental Investigation on the Influence of Inclination Angle on the Film Cooling Performance of Diffuser Shaped Holes[R]. ASME GT 2016-56092.
[13] Fu Z Y, Zhu H R, Liu C L, et al. Experimental Investigation of Dust-Pan Shaped Hole Film Cooling Characteristics on Pressure Side of a Turbine in a Linear Transonic Cascade[R]. ASME GT 2017-63452.
[14] Khajehhasani S, Jubran B. Film Cooling from Novel Sister Shaped Single-Holes[R]. ASME GT 2014-25971.
[15] Cutbirth J M, Bogard D G. Effects of Coolant Density Ratio on Film Cooling Performance on a Vane[R]. ASME GT 2003-38582.
[16] 李 佳, 任 静, 蒋洪德. 密度比和吹风比对透平静叶气膜冷却的影响[J]. 工程热物理学报, 2011, 32(8): 1295-1298.
[17] Liu K, Yang S F, Han J C. Influence of Coolant Density on Turbine Blade Film-Cooling with Axial and Com-Pound Shaped Holes[J]. Journal of Heat Transfer, 2012, 136(4).
[18] 李 冰, 朱惠人, 许都纯, 等. 密度比对涡轮叶片表面气膜冷却换热系数的影响[J]. 航空学报, 2007, 28(4): 801-805.
[19] 付仲议, 朱惠人, 姜 茹, 等. 高主流湍流度下密度比对涡轮导叶全气膜冷却特性的影响[J]. 推进技术, 2019, 40(7): 1585-1593.
[20] Han J C, Rallabandi A P. Turbine Blade Film Cooling Using PSP Technique[J]. Frontiers in Heat and Mass Transfer, 2010, 1: 227-237.
[21] 李 佳. 燃气轮机透平气膜冷却机理的实验与理论研究[D]. 北京: 清华大学, 2011.