Effects of Little Blades at Leading Edge of Passage on Axial Compressor Cascade Aerodynamic Performance
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China
GUO Zheng-tao1, CHU Wu-li1, YANG Jing-jing2, ZHAO Wei-guang2, WANG Guang1. Effects of Little Blades at Leading Edge of Passage on Axial Compressor Cascade Aerodynamic Performance[J]. Journal of Propulsion Technology, 2021, 42(5): 1040-1052.
[1] Sharma O P, Butler T L.Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236.
[2] Prumper H. Application of Boundary Layer Fences in Turbomachinery[R]. AGARD Ograph, 1972-164.
[3] Kawai T, Shinoki S, Adachi T. Secondary Flow Control and Loss Reduction in a Turbine Cascade Using End Wall Fences[J]. JSME International Journal, Series B, 1989, 32(3): 375-387.
[4] Kawai T, Shinoki S, Adachi T. Visualization Study of Three-Dimensional Flows in a Turbine Cascade End Wall Region[J]. JSME International Journal, Series B, 1990, 33(2): 256-264.
[5] 田 夫, 钟兢军, 孟丽艳, 等. 不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究[J]. 航空动力学报, 2005, 20(4): 613-618.
[6] 刘艳明, 钟兢军, 李海滨, 等. 不同长度端壁翼刀对压气机叶栅二次流影响的数值研究[J]. 航空动力学报, 2004, 19(5): 666-670.
[7] 陈韵之. 端壁翼刀控制高度扩压叶栅二次流的数值研究[D]. 大连:大连海事大学, 2018.
[8] Hirt S, Zaman K, Bencic T. Experiment Study of Boundary Layer Flow Control Using an Array of Ramp-Ahaped Vortex Generators[J]. AIAA Journal, 2013, 51(1):240-252.
[9] Hergt A, Meyer R, Engel K. The Capability of Influencing Secondary Flow in Compressor Cascades by Means of Passive and Active Method[C]. Berlin: First CEAS European Air and Space Conference, 2007.
[10] Hergt A, Meyer R, Muller M, et al. Loss Reduction in Compressor Cascades by Means of Passive Flow Control[R]. ASME GT 2008-50357.
[11] Hergt A, Meyer R, Muller M, et al. Effects of Vortex Generator Application on the Performance of a Compressor Cascade [R]. ASME GT 2010-22464.
[12] 李金鸽, 楚武利, 张皓光, 等. 楔形涡流发生器影响高负荷叶栅性能的机理研究[J]. 推进技术, 2017, 38(10): 2331-2339.
[13] Diaa A M, El-Dosoky M F, Abel-Hafez O E, et al. Second Flow Control on Axial Flow Compressor Cascade Using Vortex Generators[C]. Montreal: ASME International Mechanical Engineering Congress and Exposition, 2014.
[14] Rajendran A K, Shobhavathy M T, Kumar R A. CFD Analysis to Investigate the Effect of Vortex Generators on a Transonic Axial Flow Compressor Stage[C]. Hyderabad: ASME 2015 Gas Turbine India Conference, 2015.
[15] 马 姗, 楚武利, 张皓光, 等. 微型涡流发生器控制压气机叶栅二次流的数值研究[J]. 推进技术, 2017, 38(12): 2641-2651.
[16] 马 姗, 楚武利, 张皓光, 等. 涡流发生器和附面层抽吸相结合对于低速压气机叶栅性能的影响[J]. 推进技术, 2019, 40(3): 515-524.
[17] Soe J I, Kim S D, Song D J. A Numerical Study on Passive Control of Shock Wave/Turbulent Boundary Layer in a Supersonic Compressor Cascade[J]. The International Journal of Rotating Machinery, 2002, 8(6): 423-430.
[18] 刘艳明, 钟兢军, 黄洪雁, 等. 端壁翼刀控制压气机叶栅二次流的机理研究[J]. 空气动力学学报, 2005, 23(4): 431-436.
[19] Lin J C. Control of Turbulent Boundary-Layer Separation Using Micro-Vortex Generators[R]. AIAA 99-3404.
[20] 吴艳辉, 刘 军, 彭文辉, 等. 基于正交试验的压气机叶栅叶片式涡流发生器结构优化[J]. 动力工程学报, 2017, 37(3): 207-212.
[21] 张燕峰. 高载荷压气机端壁流动及其控制策略研究[D]. 西安:西北工业大学, 2010.
[22] 陈懋章. 粘性流体力学[M]. 北京:高等教育出版社, 2002.
[23] 李相君. 高负荷轴流压气机叶栅的角区失速及非轴对称端壁造型技术研究[D]. 西安:西北工业大学, 2014.
[24] 童秉钢, 尹协远, 朱克勤. 涡运动理论[M]. 合肥:中国科技大学出版社, 2009.