Matching of Fuel and Air in Pilot Stage of Single-Cavity Trapped Vortex Combustor
Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
GUO Yu-xi, HE Xiao-min, ZHU Yi-xiao, ZHANG Kai. Matching of Fuel and Air in Pilot Stage of Single-Cavity Trapped Vortex Combustor[J]. Journal of Propulsion Technology, 2021, 42(3): 578-586.
[1] Hsu K Y, Goss L P, Trump D D, et al. Performance of a Trapped-Vortex Combustor[R]. AIAA 95-0810.
[2] Burrus D L, Johnson A W, Roquemore W M, et al. Performance Assessment of a Prototype Trapped Vortex Combustor Concept for Gas Turbine Application[R]. ASME GT 2001-0087.
[3] Merlin C, Domingo P, Vervisch L. Large Eddy Simulation of a Trapped Vortex Combustor[C]. Besancon: 20th Congres Francais Mecanique, 2011.
[4] Merlin C, Domingo P, Vervisch L. Large Eddy Simulation of Turbulent Flames in a Trapped Vortex Combustor (TVC)- a Flame Let Presumed-PDF Closure Preserving Laminar Flame Speed[J]. Comptes Rendus Mecanique, 2012, 340(s11-12): 917-932.
[5] Singhal A, Ravikrishna R V. Single Cavity Trapped Vortex Combustor Dynamics, Part 1: Experiments[J]. International Journal of Spray and Combustion Dynamics, 2011, 3(1): 23-44.
[6] Singhal A, Ravikrishna R V. Single Cavity Trapped Vortex Combustor Dynamics, Part 2: Simulations[J]. International Journal of Spray and Combustion Dynamics, 2011, 3(1): 45-62.
[7] Agarwal K K, Krishna S, Ravikrishna R V. Mixing Enhancement in a Compact Trapped Vortex Combustor[J]. Combustion Science and Technology, 2013, 185(3): 363-378.
[8] 吴泽俊, 何小民, 洪 亮, 等. 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术, 2015, 36(4): 601-607.
[9] Zhu Y X, Jin Y, He X M. Effects of Location and Angle of Primary Injection on the Cavity Flow Structure of a Trapped Vortex Combustor Model[J]. Optik, 2019, 180: 699-712.
[10] 朱一骁, 何小民, 叶正源, 等. 可变几何单凹腔驻涡燃烧室的贫油熄火性能试验[J]. 推进技术, 2018, 39(6).
[11] 刘玉英, 李瑞明, 杨茂林, 等. 驻涡燃烧室凹腔流场结构实验[J]. 推进技术, 2010, 31(1).
[12] 汤 彬, 邢 菲, 邹建锋, 等. 驻涡燃烧室凹腔温度变化规律及气量分配[J]. 推进技术, 2011, 32(2):182-187.
[13] Meyer T, Brown M, Fonov S, et al. Optical Diagnostics and Numerical Characterization of a Trapped-Vortex Combustor[C]. Indiana-Polis: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002.
[14] Hendricks R C, Shouse D T, Roquemore W M, et al. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-Pass Diffuser[R]. NASA/TM-2004-212507.
[15] Hendricks R C, Ryder R C, Brankovic A, et al. Computational Parametric Study of Fuel Distribution in an Experimental Trapped Vortex Combustor Sector Rig[R]. ASME GT 2004-53225.
[16] Kumar Ezhil P K, Mishra D P. Numerical Simulation of Cavity Flow Structure in an Axisymmetric Trapped Vortex Combustor[J]. Aerospace Science and Technology, 2012, 21(1): 16-23.
[17] Kumar Ezhil P K, Mishra D P. Combustion Characteristics of a Two-Dimensional Twin Cavity Trapped Vortex Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(7).
[18] Jin Y, He X, Zhang J, et al. Experimental Study on Emission Performance of an LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3): 335-341.
[19] 金 义, 何小民, 蒋 波. 富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J]. 航空动力学报, 2011, 26(5): 1031-1036.
[20] Estevadeordal J, Gorrell S E, Copenhaver W W. PIV Study of Wake-Rotor Interactions in a Transonic Compressor at Various Operating Conditions[J]. Journal of Propulsion and Power, 2007, 23(1): 235-242.
[21] Wu Z J, He X M, Jin Y, et al. Impact of Interaction Between Cavity Flow and Mainstream on the Perormance of Model Trapped Vortex Combustor[J]. Journal of Aerospace Engineering, 2016, 230(7): 181-200.
[22] Lefebvre A H. Gas Turbine Combustion[M]. New York: Taylor and Francis, 1999.