Investigation on Endwall Loss Mechanism of a Highly Loaded Helium Turbine with Low Aspect Ratio
1.Institute of Engineering Thermophysics, Chinese Academy of Sciences,Beijing 100190,China;2.School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China;3.Key Laboratory of Light-Duty Gas-Turbine,Chinese Academy of Sciences,Beijing 100190,China
SUI Xiu-ming1, DONG Tian-tian1,2, ZHOU Qing-hui1,2, ZHAO Wei1,2, ZHAO Qing-jun1,2,3. Investigation on Endwall Loss Mechanism of a Highly Loaded Helium Turbine with Low Aspect Ratio[J]. Journal of Propulsion Technology, 2021, 42(3): 540-549.
[1] Longstaff R, Bond A. The SKYLON Project[R]. AIAA 2011-2244.
[2] 张志刚, 陈静敏, 李志永, 等. SABRE发动机吸气模式下氦气闭式循环特性分析[J]. 战术导弹技术, 2016, (2): 57-62.
[3] Paniagua G, Szokol S. Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System[J]. Journal of Propulsion and Power, 2008, 24(6): 1269-1277.
[4] Sozio E, Verstraete T, Paniagua G. Design-Optimization Approach to Multistage Axial Contra-Rotating Turbines[R]. ASME GT-2013-94762.
[5] Varvill R, Paniagua G, Kato H, et al. Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine[J]. Journal of the British Interplanetary Society, 2009, 62: 225-234.
[6] Hee C N, Ji H K, Hyeun M K. A Review of Helium Gas Turbien Technology for High-Temperature Gas-Cooled Reactors[J]. Nuclear Engineering and Technology, 2007, 39(1): 21-30.
[7] 李 东, 马云翔, 梁 晨, 等. 高温气冷堆氦气涡轮三维气动性能分析[J]. 哈尔滨工程大学学报, 2011, 32(5): 683-689.
[8] 周佳慧. 高温气冷堆氦气轮机基本特性的研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
[9] 王仲奇, 韩万金, 徐文远. 在低展弦比透平静叶栅中叶盘的弯曲作用[J]. 工程热物理学报, 1990, 11(3): 255-262.
[10] 谭青春, 张华良, 韩万金, 等. 采用弯叶片控制高负荷涡轮叶栅内附面层迁移的机理分析[J]. 热能动力工程, 2009, 24(6): 700-704.
[11] Havakechian S, Denton J. Stacking Strategies and Understanding of Flow Physics in Low-Pressure Steam Turbine, Part I: Three-Dimensional Stacking Mechanisms[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(5).
[12] Shi J, Han J Y, Zhou S Y, et al. An Investigation of a Highly Loaded Transonic Turbine Stage with Compound Leaned Vanes[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(2): 265-269.
[13] Schobeiri M T, Suryanarayanan A, Jermann C. A Comparative Aerodynamic and Performance Study of a Three Stage High Pressure Turbine with 3-D Bowed Blades and Cylindrical Blades[R]. ASME GT-2004-95365.
[14] 袁 宁, 郑 严, 于守志. 提高航空发动机性能的弯扭导向器技术[J]. 推进技术, 2001, 22(6): 458-463.
[15] 石 靖, 韩鉴元. 小发动机涡轮的气动设计问题[J]. 航空动力学报, 1991, 6(1): 29-32.
[16] 韩 俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报, 2014, 54(1): 16-21.
[17] 谢 婕, 夏 晨, 张远森, 等. 低展弦比微型轴流涡轮弯叶片设计[J]. 南京航空航天大学学报, 2015, 47(1): 160-166.
[18] Tan C Q, Yamamoto A. Influences of Blade Bowing on Flowfields of Turbine Stator Cascades[J]. AIAA Journal, 2003, 41(10): 1697-1972.
[19] Bohn D E, Ren J, Tummers C. Unsteady 3D-Numerical Investigation of the Influence of the Blading Design on the Stator-Rotor Interaction in a 2-Stage Turbine[R]. ASME GT 2005-68115.
[20] Wingehofer F, Haselbacher H. New Optimization Criteria for the Design of Three-Dimensional Bladings Applied to Compound Lean Nozzles of an Axial Turbines[R]. ASME GT 2004-53830.
[21] Rosic B, Xu L P. Blade Lean and Shroud Leakage Flows in Low Aspect Ratio Turbines[J]. Journal of Turbomachinery, 2012, 134(3).