Effects of Variable Rotor Speed Flight Control on Output Response of Turboshaft Engine
1.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China;2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
YAN Qiu-ying1, DU Zi-yan2, ZHOU Xiu-qing1, HUANG Kai-ming1. Effects of Variable Rotor Speed Flight Control on Output Response of Turboshaft Engine[J]. Journal of Propulsion Technology, 2021, 42(3): 683-691.
[1] DeSmidt H A, Smith E C, Bill R C, et al. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System with Coupled Engine/Transmission/Rotor Dynamics[R]. NASA/CR-2013-216502.
[2] Welch Gerard E. Overview of Variable-Speed Power-Turbine Research[C]. Cleveland: NASA Fundamental Aeronautics Conference, 2011.
[3] Yamauchi G K. NASA Subsonic Rotary Wing Project, Multidisciplinary Analysis & Technology Development: Overview[C]. Georgia: Fundamental Aeronautics Program Annual Meeting, 2009.
[4] Daso Endwell O. NASA Overview: Fundamental Aeronautics Program Research Activities on Noise Impacts[C]. Washington: Noise Impacts Roadmap Annual Meeting, 2011.
[5] Johnson W, Yamauchi G K, Watts M E. NASA Heavy Lift Rotorcraft Systems Investigation[R]. SAE Technical Paper, 2005-01-3149.
[6] 居新星. 变转速直升机/传动系统/发动机综合建模与控制研究[D]. 南京: 南京航空航天大学, 2016.
[7] Smith B J, Zagranski R D. Next Generation Control System for Helicopter Engines[C]. Washington, DC: 57th International Annual Forum Proceedings of AHS, 2001.
[8] Smith B J, Zagranski R D. Closed Loop Bench Testing of the Next Generation Control System for Helicopter Engines[C]. Canada: 58th Annual Forum of AHS, 2002.
[9] Neighbors W K III, Rock S M, Stephen Kenneth. Integrated Flight/Propulsion Control Specification: Accounting for Two Way Coupling[C]. Scottsdale: Guidance, Navigation, and Control Conference, 1994.
[10] Mare J, Jian F U. Review on Signal-by-Wire and Power-by-Wire Actuation for More Electric Aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870.
[11] Srinathkumar S. Appendix C: BO-105 Helicopter State Variable Models[M]. Eigenstructure Control Algorithms: Applications to Aircraft/Rotorcraft Handling Qualities Design, 2011.
[12] Avanzini G, Thomson D, Torasso A. Model Predictive Control Architecture for Rotorcraft Inverse Simulation[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1): 207-217.
[13] Bibik P, Narkiewicz J. Helicopter Optimal Control after Power Failure Using Comprehensive Dynamic Model[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1354-1362.
[14] Litt J S, Edwards J M, Decastro J A. A Sequential Shifting Algorithm for Variable Rotor Speed Control[C]. Virginia Beach: AHS International Annual Forum, 2007.
[15] Misté G A, Garavello A, Benini E, et al. A New Methodology for Determining the Optimal Rotational Speed of a Variable RPM Main Rotor/Turboshaft Engine System[C]. Arizona: AHS 69th Annual Forum, 2013.
[16] Misté G A, Benini E. Performance of a Turbo-Shaft Engine for Helicopter Applications Operating at Variable Shaft Speed[C]. Mumbai: Proceedings of the ASME Gas Turbine Conference, 2012.
[17] Han D. Study on the Performance and Trim of Helicopters with Variable Speed Rotors[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(6).
[18] Park J S, Koo K S, Lee E J. The Changes of Soil Salinity in the Pinus Densiflora Forest after Seawater Spread Using a Fire-Fight Helicopter[J]. Journal of Ecology & Environment, 2015, 38(4): 443-450.
[19] 苏丙未, 万 胜, 陈 欣, 等. 一种基于动态逆的控制方案在无人机中的应用研究[J]. 南京航空航天大学学报, 2000, 32(6): 706-710.
[20] 单海燕. 四旋翼无人直升机飞行控制技术研究[D]. 南京: 南京航空航天大学, 2008.
[21] Simplicio P. Helicopter Nonlinear Flight Control: An Acceleration Measurements-Based Approach Using Incremental Nonlinear Dynamic Inversion[J]. Control Engineering Practice, 2013, 21(8): 1065-1077.