Effects of Area Ratio of Film Hole to Impingement Hole and Momentum Flux Ratio on Overall Cooling Effectiveness of Afterburner Double Wall Heat Shield
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Northwestern Polytechnical University, Xi’an 710072,China;3.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
NIU Jia-jia1,2, LIU Cun-liang1,2, LIU Hai-yong1,2, XIAO Xiang3, LIN Jian-fu3. Effects of Area Ratio of Film Hole to Impingement Hole and Momentum Flux Ratio on Overall Cooling Effectiveness of Afterburner Double Wall Heat Shield[J]. Journal of Propulsion Technology, 2021, 42(3): 601-611.
[1] 张孝春, 孙雨超, 刘 涛. 先进加力燃烧室设计技术综述[J]. 航空发动机, 2014, 40(2).
[2] 刘松龄, 陶 智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018.
[3] Rolls-Royce. The Jet Engine[M]. Goodwood: Rolls-Royce Publisher, 1986.
[4] 王利峰, 朱惠人, 裘 云, 等. 混合气膜冷却隔热屏壁温计算与冷却特性分析[J]. 机械设计与制造, 2008, 10(1): 33-35.
[5] 张 环, 谭辉平, 刘 洪, 等. 隔热屏的流场计算及其屈曲分析[J]. 燃烧科学与技术, 2000, 6(2): 107-110.
[6] Funazaki K, Igarashi T, Koide Y, et al. Studies on Cooling Air Ejected over a Corrugated Wall: Its Aerodynamic Behavior and Film Effectiveness[R]. ASME 2001-GT-0143.
[7] Jobin T R, Gamble E J, Bachmann J G. Development of a Computer Program for Thermal Analysis of Aircraft Cooling Liners[R]. AIAA 2006-986.
[8] 刘友宏, 李 英, 杨 旭. 冲击/发散冷却层板隔热屏冷却性能及对比[J]. 航空动力学报, 2014, 29(6): 1272-1278.
[9] Cho H H, Rhee D H. Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems[J]. Journal of Turbomachinery, 2001, 123(3): 601-608.
[10] Al Dabagh A M, Andrews G E, Abdul Husain R A A, et al. Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient[J]. Journal of Turbomachinery, 1990, 112(3): 467-476.
[11] Oh S H, Lee D H, Kim K M, et al. Enhanced Cooling Effectiveness in Full-Coverage Film Cooling System with Impingement Jets[R]. ASME GT 2008-50784.
[12] Andreini A, Cocchi L, Facchini B, et al. Experimental and Numerical Investigation on the Role of Holes Arrangement on the Heat Transfer in Impingement/Effusion Cooling Schemes[J]. International Journal of Heat and Mass Transfer, 2018, 127: 645-659.
[13] Dees J E, Bogard D G, Ledezma G A, et al. Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane[J]. Journal of Turbomachinery, 2012, 134(6): 467-476.
[14] Jung E Y, Chung H, Choi S M, et al. Conjugate Heat Transfer on Full-Coverage Film Cooling with Array Jet Impingements with Various Biot Numbers[J]. Experimental Thermal and Fluid Science, 2017, 83: 1-8.
[15] Albert J E, Bogard D G. Adiabatic and Overall Effectiveness for a Film Cooled Blade[R]. ASME GT 2004-53998.
[16] Albert J E, Bogard D G. Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side with a Trench[R]. ASME GT 2011-46703.
[17] Nathan M L, Dyson T E, Bogard D G, et al. Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane[J]. Journal of Turbomachinery, 2014, 136(3).
[18] Li M F, Li X Y, Ren J, et al. Overall Cooling Effectiveness Characteristic and Influence Mechanism on an Endwall with Film Cooling and Impingement[R]. ASME GT 2015-43069.
[19] Liu C L, Xie G, Wang R, et al. Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures with Impingement and Effusion[J]. International Journal of Heat and Mass Transfer, 2018, 127: 639-650.
[20] Xie G, Liu C L, Niu J J, et al. Experimental Investigation on Analogy Principle of Conjugate Heat Transfer for Effusion/Impingement Cooling[J]. International Journal of Heat and Mass Transfer, 2020, 147: 1-13.
[21] Earl T, Pramote D. Coupled Flow, Thermal and Structural Analysis of Aerodynamically Heat Panels[J]. Journal of Aircraft, 2012, 25(11): 1052-1059.
[22] Barozzi G S, Pagliarini G. A method to Solve Conjugate Heat Transfer Problems: The Case of Fully Developed Laminar Flow in a Pipe[J]. Journal of Heat Transfer, 1985, 107(1): 77-83.
[23] 费昕阳, 王新军, 陆海空. 平板冲击发散冷却流动与换热特性的数值模拟[J]. 西安交通大学学报, 2017, 51(7).
[24] 杨 旭, 刘友宏. 孔径比与冲击距对冲击/发散冷却隔热屏冷却性能影响[J]. 推进技术, 2014, 35(5): 668-674.
[25] 杨 谦, 林宇震, 张 弛, 等. 发散冷却与冲击/发散冷却的冷却效率对比[J]. 航空动力学报, 2014, 29(2): 268-276.
[26] Xie G, Liu C L. Effects of Impingement Gap and Hole Arrangement on Overall Cooling Effectiveness for Impingement/Effusion Cooling[J]. International Journal of Heat and Mass Transfer, 2020, 152: 1-15.
[27] Dyson T E, Bogard D G, Piggush J D, et al. Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge with Varying Hole Pitch[J]. Journal of Turbomachinery, 2013, 135(3).
[28] Moffat R J. Describing the Uncertainties in Experimental Results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.