Journal of Propulsion Technology ›› 2016, Vol. 37 ›› Issue (9): 1664-1672.

• Ship Propulsion • Previous Articles     Next Articles

Investigation on Effects of End Wall Boundary Layer

  

  1. Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China; University of Chinese Academy of Sciences,Beijing 100190,China,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China and Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China; Laboratory of Light-Duty Gas-Turbine,Chinese Academy of Sciences,Beijing 100190,China
  • Published:2021-08-15

端壁抽吸对跨声速转子流动特性影响研究

安 鑫1,2,孙小磊1,崔伟伟1,赵庆军1,3   

  1. 中国科学院 工程热物理研究所,北京 100190; 中国科学院大学,北京 100190,中国科学院 工程热物理研究所,北京 100190,中国科学院 工程热物理研究所,北京 100190,中国科学院 工程热物理研究所,北京 100190; 中国科学院 轻型动力重点实验室,北京 100190
  • 作者简介:安 鑫,男,硕士生,研究领域为内流气动热力学。
  • 基金资助:
    国家重点基础研究发展计划(2010CB227302);国家自然科学基金(51206161)。

Abstract: The numerical simulations have been carried out on Rotor 67 to explore the mechanism of flow separation in corner near hub and improve the effects of control method for corner separation. The numerical results show that both the stronger negative gradient and larger curvature change approaching trailing edge of rotor lead to corner separation. In comparison with the effects of different boundary layer suction location on corner flowfields,the optimal scheme,with which the suction location is at the 90% of chord length and the relative suction rate is 0.14%,completely eliminates the backflow in corner region and detached vortex near hub. While the maximum increase of 0.29% for rotor efficiency and a reduction of 4° for deviation angle are presented in this new scheme,with the pressure ratio maintaining constant. In addition,the accumulation of low energy fluids near hub has been attenuated obviously in the optimal scheme for hub boundary layer suction,which benefits to improve the distribution of blade loading and outlet flow parameters in rotor.

Key words: Transonic rotor;Flow control;End-wall boundary layer suction;Corner separation

摘要: 针对NASA的Rotor 67进行数值模拟以揭示轮毂角区边界层分离诱发机制和进一步完善角区分离控制方法。数值结果表明,角区边界层在强逆压梯度和叶片后半段较大曲率变化的双重影响下引发了分离。通过对比分析不同抽吸方案对角区流动的影响发现,在轮毂90%弦长位置处采用边界层抽吸,且相对抽吸流量为0.14%时,可完全消除轮毂角区内的回流流体和脱落涡结构,抽吸效果最佳。在保证转子压比基本不变的情况下,最大可使得转子效率提高0.29%,落后角减小4°。轮毂抽吸还抑制了叶根附近低能流体堆积效应,有助于改善叶片载荷分布和出口气流参数的分布。

关键词: 跨声速转子;流动控制;端壁抽吸;角区分离