Journal of Propulsion Technology ›› 2019, Vol. 40 ›› Issue (11): 2401-2419.DOI: 10.13675/j.cnki. tjjs. 180779
• Review • Next Articles
Online:
2021-08-15
Published:
2021-08-15
李佳楠1,雷凡培2,周立新1,杨岸龙1
基金资助:
LI Jia-nan, LEI Fan-pei, ZHOU Li-xin, YANG An-long. Recent Advances of Atomization Characteristics under Oscillating Backpressure Conditions in Liquid Rocket Engines[J]. Journal of Propulsion Technology, 2019, 40(11): 2401-2419.
李佳楠, 雷凡培, 周立新, 杨岸龙. 液体火箭发动机背压振荡环境下的雾化特性研究进展[J]. 推进技术, 2019, 40(11): 2401-2419.
Add to citation manager EndNote|Ris|BibTeX
URL: http://jpt.tjjsjpt.com/EN/10.13675/j.cnki. tjjs. 180779
[1] 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013. [2] 黄玉辉. 液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙: 国防科技大学, 2001. [3] Goy C J, James S R, Rea S. Monitoring Combustion Instabilities: E. ON UK’s Experience[M]. USA: American Institute of Astronautics and Aeronautics, 2005. [4] Zhou J, Chen W, Wang Y, et al. The Phenomena of Combustion Instability in Bipropellant Rocket Engines Using NTO/Hydrazine-Sorts[C]. Vancouver: 55th International Astronautical Congress, 2004. [5] Harrje D T, Reardon F H. Liquid Propellant Rocket Combustion Instability[R]. NASA SP-194, 1972. [6] Yang V, Anderson W E. 液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪 鑫, 陈 杰, 译. 北京: 科学出版社, 2001. [7] O’Connor J, Acharya V, Lieuwen T. Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes[J]. Progress in Energy and Combustion Science, 2015, 49: 1-39. [8] Yang X. Simulation of Atomization Process Coupled with Forced Perturbation with a View to Modeling and Controlling Thermoacoustic Instability[D]. UK: The University of Manchester, 2016. [9] Huynh C, Ghafourian A, Mahalingam S, et al. Combustion Design for Atomization Study in Liquid Rocket Engines[R]. AIAA92-0465. [10] Anderson W E, Miller K L, Ryan H M, et al. Effects of Periodic Atomization on Combustion Instability in Liquid-Fueled Propulsion Systems[J]. Journal of Propulsion and Power, 1998, 14(5): 818-825. [11] Anderson W E. The Effects of Atomization on Combustion Stability[D]. USA: The Pennsylvania State University, 1996. [12] Chao C C, Heister S D. Contributions of Atomization to F-1 Engine Combustion Instabilities[J]. Engineering Analysis with Boundary Elements, 2004, 28: 1045-1053. [13] Giuliani F, Gajan P, Diers O, et al. Influence of Pulsed Entries on a Spray Generated by Air-Blast Injection Device: an Experimental Analysis on Combustion Instability Processes in Aeroengines[J]. Proceedings of the Combustion Institute, 2002, 29: 91-98. [14] Schulze M, Chmid M, Sattelmayer T. Influence of Atomization Quality Modulation on Flame Dynamics in a Hypergolic Rocket Engine[J]. International Journal of Spray and Combustion Dynamics, 2016, 8(3): 1-16. [15] Anderson W E, Ryan H M, Santoro R J, et al. Combustion Instability Mechanisms in Liquid Rocket Engines Using Impinging Jet Injectors[R]. AIAA95-2357. [16] Kim J S, Williams F A. Acoustic-Instability Boundaries in Liquid-Propellant Rockets: Theoretical Explanation of Empirical Correlation[J]. Journal of Propulsion and Power, 1996, 12(3): 621-624. [17] Rayleigh L. The Explanation of Certain Acoustical Phenomena[J]. Nature, 1878, 18: 319-321. [18] Conrad T, Bibik A, Lee J, et al. Control of Combustion Instabilities by Fuel Spray Modification Using Smart Fuel Injector[R]. AIAA2003-4937. [19] Conrad T, Bibik A, Shcherbik D, et al. “Slow” Control of Combustion Instabilities by Fuel Spray Modification Using Smart Fuel Injector[R]. AIAA2004-1034. [20] Golovanevsky B, Levy Y. Suppression of Combustion Instability Using an Aerodynamically Exited Atomizer[C]. Citeseer: Proceedings of 11th International Symposium for Applications of Laser Techniques to Fluid Mechanics, 2002. [21] Guyot D, Bothien M, Moeck J, et al. Active Control of Combustion Instability Using Fuel Flow Modulation[J]. Proceedings in Applied Mathematics and Mechanics, 2007, 7(1). [22] Oefelein J C, Yang V. Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engine[J]. Journal of Propulsion and Power, 1993, 9(5): 657-677. [23] 康忠涛, 李向东, 毛雄兵, 等. 液体火箭发动机中气液同轴直流式喷嘴研究综述[J]. 航空学报, 2018, 39(9). [24] Yang A, Li B, Yang S, et al. Periodic Atomization Characteristics of an Impinging Jet Injector Element Modulated by Klystron Effect[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1973-1984. [25] Kang Z, Wang Z, Li Q, et al. Review on Pressure Swirl Injector in Liquid Rocket Engine[J]. Acta Astronautica, 2018, 145: 174-198. [26] Rayleigh L. On the Instability of Jets[J]. Proceedings of the London Mathematical Society, 1878, 10: 4-13. [27] Reitz B. Mechanism of Atomization of a Liquid Jet[J]. Physics of Fluids, 1982, 25: 1730-1742. [28] Lefebvre A H. Atomization and sprays[M]. New York: Hemisphere Press, 1989. [29] Li X, Chen T. Liquid Jet Atomization in a Compressible Gas Streams[J]. Journal of Propulsion and Power, 1999, 15(3): 369-376. [30] Shinjo J, Umemura A. Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532. [31] Shinjo J, Umemura A. Detailed Simulation of Primary Atomization Mechanism in Diesel Jet Sprays[J]. Proceedings of the Combustion Institute, 2011, 33: 2089-2097. [32] De Villiers E, Gosman A D, Weller H G. Large Eddy Simulation of Primary Diesel Spray Atomization[R]. SAE TP, 2004-01-0100. [33] Salvafor F J, Romero J V, Rosselló M D. Numerical Simulation of Primary Atomization in Diesel Spray at Low Injection Pressure[J]. Journal of Computational and Applied Mathematics, 2016, 291: 94-102. [34] Grosshans H, Movaghar A, Cao I, et al. Sensitivity of VOF Simulations of the Liquid Jet Breakup to Physical and Numerical Parameters[J]. Computers and Fluids, 2016, 136: 312-323. [35] Donnelly R J, Glaberson W. Experiments on the Capillary Instability of a Liquid Jet[J]. Proceedings of the Royal Society of London, 1966, 290(1423): 547-556. [36] Goedde E F, Yuen M C. Experiments on Liquid Jet Instability[J]. Journal of Fluid Mechanics, 1970, 40(8): 495-511. [37] Dumouchel C. On the Experimental Investigation on Primary Atomization of Liquid Streams[J]. Experiments in Fluids, 2008, 45(3): 371-422. [38] Crane L, Birch S, McCormack P D. The Effect of Mechanical Vibration on the Break-Up of a Cylindrical Water Jet in Air[J]. British Journal of Applied Physics, 1964, 15: 743-751. [39] McCormack P D, Crane L, Birch S. An Experimental and Theoretical Analysis of Cylindrical Liquid Jets Subjected to Vibration[J]. British Journal of Applied Physics, 1965, 16: 395-409. [40] Chigier N. Breakup of Liquid Sheets and Jets[R]. AIAA99-3640. [41] Miesse C C. The Effect of Ambient Pressure Oscillations on the Disintegration and Dispersion of a Liquid Jet[J]. Jet Propulsion, 1955, 25(3): 525-534. [42] Heister S D, Rutz M W, Hilbing J H. Effect of Acoustic Perturbations on Liquid Jet Atomization[J]. Journal of Propulsion and Power, 1997, 13(1): 82-88. [43] Srinivasan V, Salazar A J, Saito K. Modeling the Disintegration of Modulated Liquid Jets Using Volume-of-Fluid (VOF) Methodology[J]. Applied Mathematical Modelling, 2011, 35: 3710-3730. [44] Srinivasan V, Salazar A, Saito K. Numerical Simulation of the Disintegration of Forced Liquid Jet Using Volume-of-Fluid Method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(8): 317-333. [45] Yang X, Turan A. Simulation of Liquid Jet Atomization Coupled with Forced Perturbation[J]. Physics of Fluids, 2017, 29(2). [46] Popinet S. Gerris: a Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries[J]. Journal of Computational Physics, 2002, 190(2): 572-600. [47] Popinet S. An Accurate Adaptive Solver for Surface-Tension Driven Interfacial Flows[J]. Journal of Computational Physics, 2009, 228(16): 5838-5886. [48] Heidmann M F, Groeneweg J F. Analysis of the Dynamic Response of Liquid Jet Atomization to Acoustic Oscillations[R]. NASA TN D-5339. [49] Vorob’Ev A P. Effect of Acoustic Oscillations on the Stability of a Plane Jet[J]. Fluid Dynamics, 1991, 26(4): 736-743. [50] Hoover D V, Ryan H M, Pal S, et al. Pressure Oscillation Effects on Jet Breakup[J]. Heat and Mass Transfer in Spray Systems HTD, 1991, 187: 27-36. [51] Carpentier J B, Baillot F. Behavior of Cylindrical Liquid Jets Evolving in a Transverse Acoustic Field[J]. Physics of Fluids, 2009, 21(2). [52] Ju D, Sun X, Jia X, et al. Experimental Investigation of the Atomization Behavior of Ehanol and Kerosene in Acoustic Fields[J]. Fuel, 2017, 202: 613-619. [53] Jia X, Huang Z, Ju D, et al. Effect of High Frequency Acoustic Field on Atomization Behavior of Ethanol and Kerosene[R]. SAE TP, 2017-01-2318. [54] Yang L, Jia B, Fu Q, et al. Stability of an Air-Assisted Viscous Liquid Sheet in the Presence of Acoustic Oscillations[J]. European Journal of Mechanics/B Fluids, 2018, 67: 366-376. [55] Gonzalez-Flesca M, Schmitt T, Ducruix S, et al. Large Eddy Simulations of a Transcritical Round Jet Submitted to Transverse Acoustic Modulation[J]. Physics of Fluids, 2016, 28(5). [56] Baillot F, Blaisot J, Boisdron G, et al. Behaviour of an Air-Assisted Jet Submitted to a Transverse High-Frequency Acoustic Field[J]. Journal of Fluid Mechanics, 2009, 640: 304-342. [57] Davis D, Chehroudi B. The Effects of Pressure and Acoustic Field on a Cryogenic Coaxial Jet[R]. AIAA2004-1330. [58] Davis D, Chehroudi B. Shear-Coaxial Jets from a Rocket-Like Injector in a Transverse Acoustic Field at High Pressures[R]. AIAA2006-0758. [59] Graham J, Leyva I, Rodriguez J, et al. On the Effect of a Transverse Acoustic Field on a Flush Shear Coaxial Injector[R]. AIAA2009-5142. [60] Hardi J S, Martinez H C G, Oschwald M. LOX Jet Atomization under Transverse Acoustic Oscillations[J]. Journal of Propulsion and Power, 2014, 30(2): 337-349. [61] Hua J, Gunaratne G, Talley D, et al. Dynamic-Mode Decomposition based Analysis of Shear Coaxial Jets with and Without Transverse Acoustic Driving[J]. Journal of Fluid Mechanics, 2016, 790: 5-32. [62] Leyva I, Rodriguez J, Chehroudi B, et al. Preliminary Results on Coaxial Jet Spread Angles and the Effects of Variable Phase Transverse Acoustic Fields[R]. AIAA2008-950. [63] Squire H B. Investigation of the Instability of a Moving Liquid Film[J]. British Journal of Applied Physics, 1953, 4: 167-169. [64] Taylor G. Formation of Thin Flat Sheets of Water[J]. Proceedings of the Royal Society of London, 1960, 259: 1-17. [65] Dombrowski N, Johns W R. The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets[J]. Chemical Engineering Science, 1963, 18: 203-214. [66] Hasson D, Peck R E. Thickness Distribution in a Sheet Formation Formed by Impinging Jets[J]. AICHE Journal, 1964, 10(5): 752-754. [67] Dombrowski N, Hooper P C. A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow[J]. Journal of Fluid Mechanics, 1963, 18: 392-400. [68] Heidmann M F, Priem R J, Humphrey J C. A Study of Sprays Formed by Two Impinging Jets[R]. NACA TN3835. [69] Heidmann M F, Humphrey J C. Fluctuations in a Spray Formed by Two Impinging Jets[R]. NACA TN2349. [70] Ryan H M, Anderson W E, Pal S, et al. Atomization Characteristics of Impinging Jets[J]. Journal of Propulsion and Power, 1995, 11: 135-145. [71] Ma D, Chen X. Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets[R]. AIAA2011-97. [72] Chen X, Ma D, Yang V. Mechanism Study of Impact Wave in Impinging Jets Atomization[R]. AIAA2012-1089. [73] Chen X, Ma D, Yang V. High-Fidelity Numerical Simulations of Impinging Jet Atomization[R]. AIAA2012-4328. [74] Chen X, Yang V. Thickness-based Adaptive Mesh Refinement Methods for Multi-Phase Flow Simulations with Thin Regions[J]. Journal of Computational Physics, 2014, 269: 22-39. [75] Anderson W E, Ryan H M, Santoro R J. Impact Wave-Based Model of Impinging Jet Atomization[J]. Atomization and Sprays, 2006, 16: 791-805. [76] Bazarov V G, Lee E, Lineberry D, et al. Pulsator Designs for Liquid Rocket Injector Research[R]. AIAA2007-5156. [77] 杨尚荣, 杨岸龙, 李龙飞, 等. 喷前压力脉动对撞击式喷嘴雾化特性的影响[J]. 推进技术, 2017, 38(5): 1100-1106. [78] Mulmule A S, Tirumkudulu M S, Ananthkrishnan N, et al. Liquid Sheet Instability in the Presence of Acoustic Forcing[R]. AIAA2007-5688. [79] Mulmule A S, Tirumkudulu M S, Ramamurthi K. Instability of a Moving Liquid Sheet in the Presence of Acoustic Forcing[J]. Physics of Fluids, 2010, 22(2). [80] Dighe S, Gadgil H. Dynamics of Liquid Sheet Breakup in the Presence of Acoustic Excitation[J]. International Journal of Multiphase Flow, 2018, 99: 347-362. [81] Zhang P, Wang B. Effects of Elevated Ambient Pressure on the Disintegration of Impinged Sheets[J]. Physics of Fluids, 2017, 29(4). [82] Santoro R J, Anderson W E. Combustion Instability Phenomena of Importance to Liquid Propellant Engines[R]. The Pennsylvania University Technical ReportNo.93-0667. [83] Bazarov V G. Liquid Injector Dynamics[M]. Moscow: Mashinostroenie, 1979. [84] Bazarov V G. Liquid-Propellant Rocket Engine Injector Dynamics[J]. Journal of Propulsion and Power, 1998, 14(5): 797-806. [85] Bazarov V G. Design of Injectors for Self-Sustaining of Combustion Chambers Stability[R]. AIAA2006-4722. [86] Fu Q, Yang L, Qu Y, et al. Geometrical Effects on the Fluid Dynamics of an Open-End Swirl Injector[J]. Journal of Propulsion and Power, 2011, 27(5): 929-936. [87] Yang A, Yang S, Xu Y, et al. Periodic Atomization Characteristics of Simplex Swirl Injector Induced by Klystron Effect[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1066-1074. [88] Cheng P, Li Q, Kang Z, et al. Response of Inner Flow and Spray Characteristics of a Pressure Swirl Injector to Pressure Oscillation Supply System[J]. Acta Astronautica, 2019, 154: 82-91. [89] 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6). [90] Khil T, Chung Y, Bazarov V G, et al. Dynamic Characteristics of Simplex Swirl Injector in Low Frequency Range[J]. Journal of Propulsion and Power, 2012, 28(2): 323-333. [91] Khil T, Kim S, Kim H, et al. Spray Characteristics of a Single Simplex Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line[C]. Kyoto: International Conference on Liquid Atomization and Spray System, 2006. [92] Chung Y, Kim H, Jeong S, et al. Dynamic Characteristics of Open-Type Swirl Injector with Varying Geometry[J]. Journal of Propulsion and Power, 2016, 32(3): 583-591. [93] 薛帅杰, 刘红军, 洪 流, 等. 厚液膜敞口型离心喷嘴动力学特性试验研究[J]. 航空学报, 2018, 39(12). [94] 杨岸龙, 杨尚荣, 费 俊, 等. 一种高频高幅值反压振荡雾化实验装置[P]. 中国专利: 201610858912.1, |
[1] | LIU Chuan1,2, LIU Jun1,2, YAO Tian-liang1,2, LIN Qing-guo1,2, SUN De-chuan3. Design and Experimental Investigation on Uniform Distributed Injector in HAN-Based Monopropellant Thruster [J]. Journal of Propulsion Technology, 2021, 42(7): 1606-1614. |
[2] | KUANG Liang, LIU Pei-jin, YOU Yan-feng, LIAO Dan-yang, YANG Wen-jing. Effects of Acoustic Force Acted on Condensed Particles in Solid Rocket Motor [J]. Journal of Propulsion Technology, 2021, 42(6): 1312-1320. |
[3] | ZHANG Chi, TAO Chao, HAN Xiao, ZHOU Yu-chen, LIN Yu-zhen. Extraction of Propagation Structure on Stratified Swirl Flame Dynamics under Velocity Fluctuation [J]. Journal of Propulsion Technology, 2021, 42(1): 173-184. |
[4] | DENG Kai, HU Jin-lin, WANG Ming-xiao, ZHONG Yi, ZHAO Sheng-lang, ZHONG Ying-jie. Effects of Hydrogen Contents Change on Combustion Instability of Hydrogen-Methane Bluff-Body Flame at Different Velocities [J]. Journal of Propulsion Technology, 2021, 42(1): 185-191. |
[5] | MA Jing1, GUO Zhi-hui1. Analysis of Combustion Instability Characteristics of Mode Switching on Lean-Premixed Swirling Flame [J]. Journal of Propulsion Technology, 2020, 41(5): 1072-1081. |
[6] | LI Jia-nan1, LEI Fan-pei2, ZHOU Li-xin1. Effects of Backpressure on Atomization Characteristics of Impinging Jet Injector [J]. Journal of Propulsion Technology, 2020, 41(4): 847-859. |
[7] |
.
|
[8] | MA Cun-xiang,SUN Lu,MA Xin,DENG Yuan-hao,XU Hua-sheng. Experimental Study on Combustion Instability of Lean Premixed Pre-Vaporized Combustor [J]. Journal of Propulsion Technology, 2019, 40(3): 602-607. |
[9] | JIN Bing-ning,LIU Pei-jin,Hichem Rezaiguia,WEI Shao-juan,XU Guan-yu. Research on Experimental Method for Measuring Velocity-Coupled Response Function of Solid Propellant [J]. Journal of Propulsion Technology, 2019, 40(1): 192-198. |
[10] | SHI Li1,FU Zhong-guang2,WANG Rui-xin2,SONG Jia-sheng2,SHEN Ya-zhou2,ZHANG Hui2. Effects of Cross-Sectional Area of Combustion Chamber on Characteristics of Pressure Oscillation and NOx Formation [J]. Journal of Propulsion Technology, 2018, 39(3): 592-604. |
[11] | YANG Ya-jing,LI Xiao-ya,XIE Wei. Numerical Study on Combustion Stability in a Lean Premixed Combustor [J]. Journal of Propulsion Technology, 2017, 38(11): 2562-2571. |
[12] | SU Wan-xing,LI Yao-jian,CHEN Sheng-ze,LI Ji. Effects of Submerged Nozzle on Stability of [J]. Journal of Propulsion Technology, 2016, 37(8): 1529-1534. |
[13] | WU Yu-wen,HAN Qi-xiang,YANG Guang-yuan,WANG Jia-hua. Investigation of Atomization Characteristics of a Pre-Filmed Ultrasonic Nozzle with Central Rod [J]. Journal of Propulsion Technology, 2016, 37(6): 1123-1128. |
[14] | WANG Guang-xu,GUO Can-lin,SHI Xiao-bo,WU Hai-bo,ZHOU Li-xin. Analysis of Longitudinal Combustion Instability [J]. Journal of Propulsion Technology, 2016, 37(6): 1129-1135. |
[15] | LI Jia-nan,FEI Jun,YANG Wei-dong,ZHOU Li-xin,LIU Chang-bo. Quasi-Direct Numerical Simulation on Atomization [J]. Journal of Propulsion Technology, 2016, 37(4): 713-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: