[1] Goebel D M. Analytical Discharge Performance Model for RF and Kaufman Ion Thrusters[R]. AIAA2007-5246.
[2] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进, 2015, 41(2): 8-12.
[3] Hamley J A, Pinero L R, Rawlin V K, et al. NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results[R]. AIAA96-2720
[4] Pawlikt E V, Fitzgerald D J. Cathode and Ion Chamber Investigation on a 20cm Diameter Hollow Cathode Ion Thruster[R]. AIAA71-158.
[5] Goebel D M, Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters[D]. Pasadena: Jet Propusion Laboratory California Institute of Technology, 2008.
[6] Goebel D M, Wirz R E, Katz I. Analytical Ion Thruster Discharge Performance Model[R]. AIAA2006-4486.
[7] Brophy J R. Ion Thruster Performance Model[R]. NASA-CR-174810, 1984.
[8] Brophy J R, Wilbur P J. Simple Performance Model for Ring and Line Cusp Ion Thrusters[J]. AIAA Journal, 1985, 23(11): 1731-1736.
[9] Brophy J R. Simulated Ion Thruster Operation Without Beam Extraction[R]. AIAA90-2655.
[10] Matossian J N, Beattie J R. Plasma Properties in Electron Bombardment Ion Thrusters[R]. AIAA87-1076.
[11] 王少宁, 王卫国. 适用于30cm离子推力器的5kW电源处理单元设计[J]. 航天器工程, 2013, 22(5):74-79.
[12] Wirz R E, Katz I, Goebel D M, et al. Electron Backstreaming Determination for Ion Thrusters[J]. Journal of Propulsion and Power, 2011, 27(1): 206-230.
[13] Sengupta A. Experimental and Analytical Investigation of a Ring Cusp Ion Thruster[D]. Los Angeles: University of Southern California, 2005.
[14] Beattie J R. A Model for Predicting the Wearout Lifetime of The LeRC/HUGHES 30cm Mercury Ion Thruster [R]. AIAA79-2079.
[15] Poeschel R L, Beattie J R. Primary Electric Propulsion Technology Study[R]. NASA-CR-159688.
[16] Wilbur P J, Brophy J R. The Effect of Discharge Chamber Wall Temperature on Ion Thruster Performance[J]. AIAA Journal, 1986, 24(2): 278-283.
[17] Torres E R, Matossian J N, Williams J D. Prediction of the Performance of an Ion Thruster Using Buckminster Fullerence as the Propellant[R]. AIAA93-2494.