Research Progress on Controllable Solid Propulsion
1.School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;2.Institute of Space Propulsion,Nanjing University of Science and Technology,Nanjing 210094,China;3.Key Laboratory of Special Energy Materials,Ministry of Education,Nanjing University of Science and Technology,Nanjing 210094,China
[1] 于建国, 郑咏岚. 变推力固体火箭发动机战术导弹弹道优化研究[J]. 现代防御技术, 2014, 42(4): 20-23.
[2] Bandyopadhyay S, Subramanian G P, Foust R, et al. A Review of Impending Small Satellite Formation Flying Missions[C]. Florida: 53rd AIAA Aerospace Sciences Meeting, 2015.
[3] 张淑慧, 胡 波, 孟雅桃. 推力可控固体火箭发动机应用及发展[J]. 固体火箭技术, 2002, 25(4): 12-15.
[4] Tahsini A, Farshchi M. Thrust Termination Dynamics of Solid Propellant Rocket Motors[J]. Journal of Propulsion and Power, 2007, 23(5): 1141-1143.
[5] Lewis Jr D H, Janson S W, Cohen R B, et al. Digital Micropropulsion[J]. Sensors and Actuators A: Physical, 2000, 80(2): 143-154.
[6] Rossi C, Scheid E, Esteve D. Theoretical and Experimental Study of Silicon Micromachined Microheater with Dielectric Stacked Membranes[J]. Sensors and Actuators A: Physical, 1997, 63(3): 183-189.
[7] Rossi C, Zhang K, Esteve D, et al. Nanoenergetic Materials for MEMS: a Review[J]. Journal of Microelectromechanical Systems, 2007, 16(4): 919-931.
[8] Lee J, Kim T. MEMS Solid Propellant Thruster Array with Micro Membrane Igniter[J]. Sensors and Actuators A: Physical, 2013, 190: 52-60.
[9] Zhang K L, Chou S K, Ang S S. Development of a Solid Propellant Microthruster with Chamber and Nozzle Etched on a Wafer Surface[J]. Journal of Micromechanics and Microengineering, 2004, 14(6): 785-792.
[10] Sathiyanathan K, Lee R, Chesser H, et al. Solid Propellant Microthruster Design for Nanosatellite Applications[J]. Journal of Propulsion and Power, 2011, 27(6): 1288-1294.
[11] Tanaka S, Kondo K, Habu H, et al. Test of B/Ti Multilayer Reactive Igniters for a Micro Solid Rocket Array Thruster[J]. Sensors and Actuators A: Physical, 2008, 144(2): 361-366.
[12] Puchades I, Hobosyan M, Fuller L F, et al. MEMS Microthrusters with Nanoenergetic Solid Propellants[C]. Toronto: 14th IEEE International Conference on Nanotechnology, 2015.
[13] 汝承博, 王 飞, 许建兵, 等. 静电喷射纳米铝热剂的微推进性能[J]. 含能材料, 2016, 24(12): 1136-1144.
[14] Ru C, Fei W, Xu J, et al. Superior Performance of a MEMS-Based Solid Propellant Microthruster (SPM) Array with Nanothermites[J]. Microsystem Technologies, 2017, 23(8): 3161-3174.
[15] Dai J, Wang F, Ru C, et al. Ammonium Perchlorate as an Effective Additive for Enhancing the Combustion and Propulsion Performance of Al/CuO Nanothermites[J]. The Journal of Physical Chemistry C, 2018, 122(18): 10240-10247.
[16] Fricke H D, Burr J W, Sobienick M G. Fluidized Powders-a New Approach to Storable Missile Fuels[C]. Las Vegas: 12th JANNAF Liquid Propulsion Meeting, 1970.
[17] Wickman J. Insitu Mars Rocket and Jet Engines Burning Carbon Dioxide[C]. Los Angeles: 35th Joint Propulsion Conference and Exhibit, 1999.
[18] Shafirovich E, Varma A. Metal-CO2 Propulsion for Mars Missions: Current Status and Opportunities[J]. Journal of Propulsion and Power, 2008, 24(3): 385-394.
[19] 张胜敏, 杨玉新, 胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术, 2015, 38(3): 347-350.
[20] Loftus H, Montanino L, Bryndle R. Powder Rocket Feasibility Evaluation[C]. New Orleans: 8th Joint Propulsion Specialist Conference, 1972.
[21] Li Y, Hu C, Deng Z, et al. Experimental Study on Multiple-Pulse Performance Characteristics of Ammonium Perchlorate/Aluminum Powder Rocket Motor[J]. Acta Astronautica, 2017, 133: 455-466.
[22] Foote J, Litchford R. Powdered Magnesium-Carbon Dioxide Combustion for Mars Propulsion[R]. AIAA 2005-4469.
[23] Sun H, Hu C, Zhang T, et al. Experimental Investigation on Mass Flow Rate Measurements and Feeding Characteristics of Powder at High Pressure[J]. Applied Thermal Engineering, 2016, 102: 30-37.
[24] Varghese T L, Gaindhar S C, David J, et al. Developmental Studies on Metallised UDMH and Kerosene Gels[J]. Defence Science Journal, 1995, 45(1): 25-30.
[25] Starkovich J, Palaszewski B. Technology for Gelled Liquid Cryogenic Propellants-Metallized Hydrogen/Aluminum[C]. Monterey: 29th Joint Propulsion Conference and Exhibit, 1993.
[26] 陈志刚, 杨荣杰. 金属化凝胶推进剂的性能评估[J]. 推进技术, 1998, 19(1): 102-106. (CHEN Zhi-gang, YANG Rong-jie. Performance Evaluation of Metallized Gelled Propellants[J]. Journal of Propulsion Technology, 1998, 19(1): 102-106.)
[27] Zurawski R, Green J. An Evaluation of Metallized Propellants Based on Vehicle Performance[C]. San Diego: 23rd Joint Propulsion Conference, 1987.
[28] Palaszewski B, Powell R. Launch Vehicle Performance Using Metallized Propellants[J]. Journal of Propulsion and Power, 1994, 10(6): 828-833.
[29] Ciezki H K, Naumann K W, Weiser V. Status of Gel Propulsion in the Year 2010 with a Special View on German Activities[C]. Harnaburg: Deutscher Luft-Und Raumfahrtkongress 2010, 2010.
[30] Ciezki H K, Naumann K W. Some Aspects on Safety and Environmental Impact of the German Green Gel Propulsion Technology[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 539-547.
[31] Ciezki H K, Hürttlen J, Naumann K W, et al. Overview of the German Gel Propulsion Technology Program[R]. AIAA 2014-3794.
[32] 宋明德, 叶定友, 吴心平. 膏体推进剂脉冲火箭发动机新方案的理论和实验研究[J]. 推进技术, 1999, 20(1): 1-5. (SONG Ming-de, YE Ding-you, WU Xin-ping. Theoretical and Experimental Study on a New Scheme of Paste Propellant Pulse Rocket Engine[J]. Journal of Propulsion Technology, 1999, 20(1): 1-5.)
[33] 肖金武, 张文刚. PEPA/AP膏体推进剂配方研究[J]. 固体火箭技术, 2001, 24(4): 46-49.
[34] 张明信, 张胜勇. 膏体推进剂点火和燃烧特性的实验研究[J]. 固体火箭技术, 2003, 26(2): 30-32.
[35] 张胜勇, 毛根旺. 膏体推进剂流动特性实验研究[J]. 固体火箭技术, 2009, 32(5): 521-523.
[36] Petersen E L, Seal S, Stephens M, et al. Self-Extinguishable Solid Propellant[P]. US:413269, 2012-02-14.
[37] Petersen E L, Seal S, Stephens M, et al. Solid Propellant Rocket Motor Having Self-Extinguishing Propellant Grain and Systems Therefrom[P]. US:413284, 2012-12-25.
[38] 高红旭, 王 瑛, 赵凤起. 自熄火固体推进剂的燃烧性能[C]. 大连:中国化学会第30届学术年会, 2016.
[39] Gimelshein N E, Gimelshein S F, Ketsdever A. Thrust Augmentation in Solid Rocket Motors Using Beamed Microwave Energy[R]. AIAA 2009-4962.
[40] Oda Y, Shibata T, Komurasaki K, et al. Thrust Performance of Microwave Rocket under Repetitive-Pulse Operation[J]. Journal of Propulsion and Power, 2009, 25(1): 118-122.
[41] Cornella B, Ketsdever A, Gimelshein N E, et al. Thrust Augmentation of Solid Rocket Motors Using Beamed Microwave Energy[J]. Journal of Propulsion and Power, 2010, 26(5): 1016-1024.
[42] Barkley S J, Zhu K, Lynch J E, et al. Microwave Plasma Enhancement of Multiphase Flames: On-Demand Control of Solid Propellant Burning Rate[J]. Combustion and Flame, 2019, 199: 14-23.
[43] Dunning J, Sankovic J. NASA's Electric Propulsion Program[R]. AIAA 2005-3145.
[44] Sawka W N, Katzakian Jr A, Grix C. Solid State Digital Propulsion Cluster Thrusters for Small Satellites Using High Performance Electrically Controlled Extinguishable Solid Propellants[C]. Logan: 19th Annual AIAA/USU Conference on Small Satellites, 2005.
[45] Grix C, Sawka W N. Electrically Controlled Extinguishable Solid Propellants: a Safe, Broadly Scalable Propulsion Technology[C]. Monterey: 53rd JANNAF Propulsion Meeting, 2005.
[46] Chung K, Rozumov E, Kaminsky D, et al. Development of Electrically Controlled Energetic Materials (ECEM)[J]. ECS Transactions, 2013, 50(40): 59-66.
[47] Sawka W N, McPherson M. Electrical Solid Propellants: a Safe, Micro to Macro Propulsion Technology[R]. AIAA 2013-4168.
[48] Koehler F, Langhenry M, Summers M, et al. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites[C]. Logan: 30th Annual AIAA/USU Conference on Small Satellites, 2017.
[49] Summers M H, Villarreal J K, Langhenry M T, et al. Electrode Ignition and Control of Electrically Operated Propellants[P]. US: 197421, 2018-01-04.
[50] 王新强, 邓康清, 李洪旭, 等. 电控固体推进剂点火技术研究[J]. 固体火箭技术, 2017, 40(3): 313-318.
[51] 胡建新, 李 洋, 何志成, 等. 电控固体推进剂热分解和燃烧性能研究[J]. 推进技术, 2018, 39(11): 2588-2594.
[52] 鲍立荣, 张 伟, 陈永义, 等. HAN基电控固体推进剂的热分解和电导率特性[J]. 含能材料, 2019, 27(9): 743-748.
[53] Grix C E, Sawka W N. Family of Modifiable High Performance Electrically Controlled Propellants and Explosives[P]. US: 993084, 2014-11-18.
[54] Kakami A, Hamada T, Shimoda M, et al. Throttleable Solid Propellant Microthruster Using Laser-Assisted Combustion[R]. AIAA 2013-4078.
[55] Kakami A, Masaki S, Horisawa H, et al. Solid Propellant Microthruster Using Laser-Assisted Combustion[R]. AIAA 2004-3797.
[56] Kakami A, Hiyamizu R, Shuzenji K, et al. Laser-Assisted Combustion of Solid Propellants[R]. AIAA 2007-5783.
[57] Kakami A, Takai T, Tachibana T. Solid Propellant Combustion under Laser Heating[R]. AIAA 2008-4788.
[58] Isakari S, Asakura T, Haraguchi D, et al. Performance Evaluation and Thermography of Solid-Propellant Microthrusters with Laser-Based Throttling[J]. Aerospace Science and Technology, 2017, 71: 99-108.
[59] Kakami A, Haraguchi D, Matsuura Y, et al. Effect of Carbon Black on Performance of Laser-Controlled Solid Propellant Microthruster[C]. Cincinnati: 2018 Joint Propulsion Conference, 2018.
[60] Shen R, Wu L, Qin Z, et al. New Concept of Laser-Augmented Chemical Propulsion[M]. Berlin: Springer, 2017.
[61] 沈瑞琪, 段卜仁, 章皓男, 等. 燃速可控的光敏推进剂[P]. 中国专利:108373397, 2018-08-07.
[62] Rossi C, Briand D, Dumonteuil M, et al. Matrix of 10×10 Addressed Solid Propellant Microthrusters: Review of the Technologies[J]. Sensors and Actuators A: Physical, 2006, 126(1): 241-252.
[63] Tanaka S, Hosokawa R, Tokudome S, et al. MEMS-Based Solid Propellant Rocket Array Thruster[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 46(151): 47-51.
[64] Nicholas A, Finne T, Galysh I, et al. SpinSat Mission Overview[C]. Logan: 27th Annual AIAA/USU Conference on Small Satellites, 2013.
[65] Kakami A, Terashita S, Tachibana T. Application of Laser-Assisted Combustion to Solid Propellant for Space Propulsion[R]. AIAA 2010-6584.
[66] Kakami A, Morita, Taketoshi H, et al. Laser Assisted Combustion of Solid Propellant for a 100mN Class Variable Thrust Rocket Motor[R]. AIAA 2012-4042.
[67] He N, Chen Y, Wu L, et al. Combustion Characteristics of 5-Aminotetrazole-Based Propellant for Laser Hybrid Propulsion[J]. International Journal of Energetic Materials and Chemical Propulsion, 2017, 16(3): 207-218.
[68] Szabo J, Miller T, Herr J, et al. Magnesium Bipropellant Rockets for Martian Ascent Vehicles[R]. AIAA 2011-5834.
[69] 李 芳, 胡春波, 何国强. Mg粉/CO2粉末火箭发动机性能分析[J]. 固体火箭技术, 2010, 33(4): 414-418.
[70] Wickman J, James E. Gelled Liquid Oxygen/Metal Powder Monopropellants[C]. Nashville: 28th Joint Propulsion Conference and Exhibit, 1992.
[71] Yasuhara W, Olson A, Finato S. Advanced Gel Propulsion Controls for Kill Vehicles[C]. Albuquerque: Annual Interceptor Technology Conference, 1993.
[72] Kukushkin V. State and Prospects of Solid Propellant Rocket Development[C]. Nashville: 28th Joint Propulsion Conference and Exhibit, 1992.
[73] 闫大庆, 周宏民, 单建胜. 凝胶/膏状推进剂研究发展状况[J]. 火箭推进, 2003, 29(1): 38-46.
[74] Madlener K, Ciezki H, Von Kampen J, et al. Characterization of Various Properties of Gel Fuels with Regard to Propulsion Application[R]. AIAA 2008-4870.
[75] 刘爱华, 崔金平, 李前虎. 膏体冲压发动机输送及调节技术试验研究[J]. 弹箭与制导学报, 2010, 30(1): 151-152.
[76] 张积炳. 膏体富燃料推进剂冲压发动机挤压输送特性试验研究[J]. 航空兵器, 2010, (4): 62-64.
[77] Chung K, Rozumov E, Kamin-sky D, et al. Development of Electrically Controlled Energetic Materials for 120mm Tank Igniters[C]. Las Vegas: Insensitive Munitions and Energetic Materials Technology Symposium, 2012.
[78] McCauley R, Fischbach S, Fredrick R. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements[R]. NASA AFP-2012-2457.