Effects of Circumferential Coverage Ratio and Axial Positionof Injector on Axial Compressor Stability Enhancementwith Self-Recirculating Casing Treatment
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China;2.Collaborative Innovation Center of Advanced Aero-Engine,Beijing 100191,China
WANG Guang1, CHU Wu-li1,2, CHI Zhi-dong1, CHEN Xiang-yi1, ZHANG Hao-guang1. Effects of Circumferential Coverage Ratio and Axial Positionof Injector on Axial Compressor Stability Enhancementwith Self-Recirculating Casing Treatment[J]. Journal of Propulsion Technology, 2020, 41(6): 1237-1249.
[1] Hathaway M D. Passive Endwall Treatments for Enhancing Stability[R]. NASA/TM 2007-214409.
[2] Tan C S, Day I, Morris S, et al. Spike-Type Compressor Stall Inception, Detection, and Control[J]. Annual Review of Fluid Mechanics, 2010, 42: 275-300.
[3] 卢新根, 楚武利, 朱俊强, 等. 轴流压气机机匣处理研究进展及评述 [J]. 力学进展, 2006, 36(2): 222-232.
[4] Griffin R G, Smith L HJr. Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part I: Design of Rotor Blowing and Bleeding Configurations[R]. NASA CR-54587, 1966.
[5] Koch C C, Smith L HJr. Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part VI: Final Report[R]. NASA CR-54592, 1970.
[6] Hathaway M D. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance[R]. ASME GT 2002-30368.
[7] Yang H, Nuernberger D, Nicke E, et al. Numerical Investigation of Casing Treatment Mechanisms with a Conservative Mixed-Cell Approach[R]. ASME GT 2003-38483.
[8] Strazisar A J, Bright M M, Thorp S, et al. Compressor Stall Control Through Endwall Recirculation[R]. ASME GT 2004-54295.
[9] Weichert S, Day I, Freeman C. Self-Recirculating Casing Treatment for Axial Compressor Stability Enhancement[R]. ASME GT 2011-46042.
[10] Khaleghi H. Effect of Discrete Endwall Recirculation on the Stability of a High-Speed Compressor Rotor[J]. Aerospace Science and Technology, 2014, 37: 130-137.
[11] 张皓光. 轴流压气机机匣处理的试验与数值研究 [D]. 西安:西北工业大学, 2008.
[12] 王 维. 轴流压气机叶顶喷气和自循环机匣处理的设计规律及流动机理研究[D]. 西安:西北工业大学, 2016.
[13] 李继超, 刘 乐, 张宏伟, 等. 低速单级轴流压气机自引气扩稳实验[J]. 航空动力学报, 2012, 27(11):2577-2584.
[14] 李继超, 林 峰, 刘 乐, 等. 跨音轴流压气机自循环喷气扩稳试验研究 [J]. 机械工程学报, 2014, 50(8): 135-143.
[15] Yang C, Zhao S, Lu X, et al. Investigation on Multiple Cylindrical Holes Casing Treatment for Transonic Axial Compressor Stability Enhancement[J]. Journal of Thermal Science, 2014, 23(4): 346-353.
[16] 吴艳辉, 杨国伟, 王 博, 等. 轴向引气位置对自循环机匣扩稳的能力的影响机制研究[C]. 大连:中国航天空天动力联合会议, 2017.
[17] Zhong Yi-ming, Chu Wu-Li, Zhang Hao-Guang. Numerical Investigation on the Effect of Bleed Port with Self-Recirculating Casing Treatment on the Stability of a 1.5-Stage Transonic Compressor[R]. ASME GT 2019-90543.
[18] 晏 松, 楚武利, 张皓光, 等. 不同轴向引气位置对自循环机匣处理的影响研究 [J]. 推进技术, 2019, 40(7): 1478-1489.
[19] 张皓光, 安 康, 谭 锋, 等. 自循环机匣处理轴向位置影响扩稳能力的机理 [J]. 航空动力学报, 2017, 32(4): 983-989.
[20] Cassina Gabriele, Beheshti Behnam H, Kammerer Albert, et al. Parametric Study of Tip Injection in an Axial Flow Compressor Stage[R]. ASME GT 2007-27403.
[21] Wang Wei, Chu Wu-li, Zhang Hao-guang, et al. Numerical Investigation on the Effects of Circumferential Coverage of Injection in a Transonic Compressor with Discrete Tip Injection[R]. ASME GT 2014-25420.
[22] 卢新根. 轴流压气机内部流动失稳及其被动控制策略研究[D]. 西安:西北工业大学, 2007.
[23] 楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安:西北工业大学出版社, 2009.
[24] Choi M, Vahdati M, Imregun M. Effects of Fan Speed on Rotating Stall Inception and Recovery[J]. Journal of Turbomachinery, 2010, 133(4): 1396-1402.
[25] 童志庭. 轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究[D]. 北京:中国科学院工程热物理研究所, 2006.