Numerical Study of Effects of Centrifugal Force on Ice Accretion on a Rotor Blade
1.School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China;2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;3.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
CHEN Ning-li1,2, DU Jian-min1, JI Hong-hu2, HU Ya-ping2, YUAN Yong-qing3. Numerical Study of Effects of Centrifugal Force on Ice Accretion on a Rotor Blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323.
[1] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京:北京航空航天大学出版社, 2016.
[2] Kind R J, Potapczuk M G. Experimental and Computational Simulation of In-Flight Icing Phenomena[J]. Progress in Aerospace Science, 1998, 34(1): 275-345.
[3] 屈靖国, 吉洪湖, 胡娅萍, 等. 蛇形进气道影响下发动机进口部件水撞击特性的数值研究[J]. 推进技术, 2016, 37(12): 2251-2260.
[4] 胡娅萍, 吉洪湖, 吴铁鹰, 等. 旋转整流罩表面球形脱落冰运动轨迹的数值模拟[J]. 推进技术, 2016, 37(9): 1609-1616.
[5] Chen Ning-li, Ji Hong-hu, Hu Ya-ping, et al. Experimental Study of Icing Accretion on a Rotating Conical Spinner[J]. International Journal of Heat and Mass Transfer, 2015, 51(12): 1717-1729.
[6] 张丽芬, 张美华, 吴丁毅, 等. 旋转帽罩结冰相似准则的研究[J]. 推进技术, 2015, 36(8): 1164-1169.
[7] 张丽芬, 刘振侠, 张 斐, 等. 航空发动机旋转帽罩结冰表面换热系数研究[J]. 推进技术, 2017, 38(4): 853-859.
[8] Cao Y, Li G, Hess R A. Helicopter Flight Characteristics in Icing Conditions[J]. The Aeronautical Journal, 2012, 116: 963-979.
[9] Liu Y, Li L, Ning Z, et al. Experimental Investigation on the Dynamic Icing Process over a Rotating Propeller Model[J]. Journal of Propulsion and Power, 2018, 34(4): 933-946.
[10] Korkan K D, Dadone L, Shaw R J. Helicopter Rotor Performance Degradation in Natural Icing Encounter[J]. Journal of Aircraft, 1984, 21(1).
[11] Korkan K D, Cross E J, Miller T L. Performance Degradation of a Model Helicopter Rotor with a Generic Ice Shape[J]. Journal of Aircraft, 1984, 21(10): 823-830.
[12] Korkan K D, Dadone L, Shaw R J. Performance Degradation of Helicopter Rotor in forward Flight Due to Ice[J]. Journal of Aircraft, 1985, 22(8): 713-718.
[13] Seifert H. Technical Requirements for Rotor Blades Operating in Cold Climate[J]. Borevs VI, 2003, (24): 50-55.
[14] Schneeberger Grant M, Soltis Jared , Palacios Jose L . Rotor Blade Shed Ice Projectile Length Prediction[J]. Journal of the American Helicopter Society, 2018, 63(4): 1-8.
[15] Korkan K D. Experimental Study of Performance Degradation of a Model Helicopter Main Rotor with Simulated Ice Shapes[R]. NASA-CR-190684, 1984.
[16] Brouwers E W, Palacios J L, Smith E C, et al. The Experimental Investigation of a Rotor Hover Icing Model with Shedding[C]. Phoenix:Proceedings of American Helicopter Society 66th Annual Forum, 2010.
[17] Blasco P, Palacios J, Schmitz S. Effect of Icing Roughness on Wind Turbine Power Production[J]. Wind Energy, 2017, 20(4): 601-617.
[18] Shu L, Li H, Hu Q, et al. Study of Ice Accretion Feature and Power Characteristics of Wind Turbines at Natural Icing Environment[J]. Cold Regions Science and Technology, 2018, 147: 45-54.
[19] Messinger B L. Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed[J]. Journal of Aeronautical Science, 1953, 20(1): 29-42.
[20] 钟 国, 曹义华, 赵 明. 直升机旋翼积冰的数值模拟[J]. 北京航空航天大学学报, 2012, 38(3): 330-334+339.
[21] 李国知, 胡 利, 张瑞民, 等. 直升机旋翼桨叶翼型积冰的数值模拟[J]. 直升机技术, 2008, (3): 78-81.
[22] Wang Z, Zhu C. Numerical Simulation of Three-Dimensional Rotor Icing in Hovering Flight[J]. Aerospace Engineering, 2016, 232(3): 545-555.
[23] Wang Z, Zhu C. Numerical Simulation for In-cloud Icing of Three-Dimensional Wind Turbine Blades[J]. Simulation, 2018, 94(1): 31-41.
[24] Wang Z, Zhu C. Study of the Effect of Centrifugal Force on Rotor Blade Icing Process[J]. International Journal of Aerospace Engineering, 2017, (3): 1-9.
[25] Aliaga C N, Aubé M S, Baruzzi G S, et al. FENSAP-ICE-Unsteady: Unified in-Flight Icing Simulation Methodology for Aircraft, Rotorcraft, and Jet Engines[J]. Journal of Aircraft, 2011, 48(1): 119-126.
[26] Yassin M, Nathoo M, Zhan Z, et al. Modeling of Iced Rotor Dynamics Via CFD-CSD Coupling[C]. Atlanta: Applied Aerodynamics Conference, 2018.
[27] Kelly D, Habashi W G, Quaranta G, et al. Ice Accretion Effects on Helicopter Rotor Performance, Via Multibody and CFD Approaches[J]. Journal of Aircraft, 2017, 54(3): 1165-1176.
[28] Chen Xi, Zhao Qi-jun. Numerical Simulations for Ice Accretion on Rotors Using New Three-Dimensional Icing Model[J]. Journal of Aircraft, 2017, 54(4): 1428-1442.
[29] 陈 希, 招启军, 赵国庆. 计入离心力影响的直升机旋翼翼型结冰数值模拟[J]. 航空动力学报, 2014, 29(9): 2157-2165.
[30] Kong W, Liu H. Development and Theoretical Analysis of an Aircraft Supercooled Icing Model[J]. Journal of Aircraft, 2014, 51(3): 975-986.
[31] Chen Ning-li, Ji Hong-hu, Cao Guang-zhou, et al. A Three-Dimensional Mathematical Model for Simulating Ice Accretion on Helicopter Rotors[J]. Physics of Fluids, 2018, 30(8).
[32] 苏长明, 胡娅萍, 曹广州, 等. 考虑水膜蒸发的三维明冰积冰数值研究[J]. 推进技术, 2018, 39(7):1540-1548.
[33] Britton R K. A Review of Ice Accretion Data from a Model Rotor Icing Test and Comparison with Theory[R]. AIAA 91-0661.