YANG Ke, FAN Shi-dong. Long Short-Term Memory Network Based Method and Its Application in Time-Series Data Trend Prediction[J]. Journal of Propulsion Technology, 2021, 42(3): 675-682.
[1] Pecht M. Prognostics and Health Management of Electronics[M]. Hoboken: John Wiley & Sons, 2008.
[2] 胡昌华, 施 权, 司小胜, 等. 数据驱动的寿命预测和健康管理技术研究进展[J]. 信息与控制, 2017, 46(1): 72-82.
[3] Yan H, Wan J, Zhang C, et al. Industrial Big Data Analytics for Prediction of Remaining Useful Life Based on Deep Learning[J]. IEEE Access, 2018, 6: 17190-17197.
[4] 雷亚国, 贾 峰, 周 昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
[5] Deutsch J, He D. Using Deep Learning Based Approaches for Bearing Remaining Useful Life Prediction[C]. Denver: Annual Conference of the Prognostics and Health Management Society, 2016.
[6] Deutsch J, He D. Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 48(1): 11-20.
[7] Babu G, Zhao P, Li X. Database Systems for Advanced Applications[M]. Berlin: Springer, 2016.
[8] Li X, Ding Q, Sun J. Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks[J]. Reliability Engineering and System Safety, 2018, 172: 1-11.
[9] Chow T, Fang Y. A Recurrent Neural-Network-Based Real-Time Learning Control Strategy Applying to Nonlinear Systems with Unknown Dynamics[J]. IEEE Transactions on Industrial Electronics, 1998, 45(1): 151-161.
[10] Heimes F. Recurrent Neural Networks for Remaining Useful Life Estimation[C]. Denver: International Conference on Prognostics and Health Management, 2008.
[11] Malhi A, Yan R, Gao R. Prognosis of Defect Propagation Based on Recurrent Neural Networks[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(3): 703-711.
[12] Wu Y, Yuan M, Dong S, et al. Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks[J]. Neurocomputing, 2017, 275: 167-179.
[13] Miao H, Li B, Sun C, et al. Joint Learning of Degradation Assessment and RUL Prediction for Aeroengines via Dual-Task Deep LSTM Networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5023-5032.
[14] Elsheikh A, Yacout S, Ouali M S. Bidirectional Handshaking LSTM for Remaining Useful Life Prediction[J]. Neurocomputing, 2019, 323: 148-156.
[15] Zhou F, Park J H, Wen C, et al. Average Accumulative Based Time Variant Model for Early Diagnosis and Prognosis of Slowly Varying Faults[J]. Sensors, 2018, 18(6).
[16] Wang Y, Li H. Complex Chemical Process Operation Evaluations Using a Novel Analytic Hierarchy Process Model Integrating Deep Residual Network with Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 191: 118-128.
[17] A?t-Sahalia Y, Xiu D. Principal Component Analysis of High-Frequency Data[J]. Journal of the American Statistical Association, 2019, 114(5): 287-303.
[18] Wang Y, Yang K, Li H. Industrial Time-Series Modeling via Adapted Receptive Field Temporal Convolution Networks Integrating Regularly Updated Multi-Region Operations based on PCA[J]. Chemical Engineering Science, 2020, 228(11).
[19] Hochreiter S, Schmidhuber J. Long Short-Term Memory [J]. Neural Computation, 1997, 9(8): 1735-1780.