YANG He-sen1, LIANG Hua1, ZHAO Guang-yin1, XIE Li-ke1, TANG Bing-liang1, HE Qi-kun1. Experiment on Flow Separation Control of Delta Wing by Array Surface Arc Plasma Pneumatic Actuation[J]. Journal of Propulsion Technology, 2020, 41(4): 802-811.
[1] Roth J R, Sherman D M, Wilkinson S P. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma[R]. AIAA 98-0328.
[2] 高国强, 颜 馨, 彭开晟, 等. 等离子体流动技术在列车减阻应用上的初步研究[J]. 电工技术学报, 2019, 34(4): 855-862.
[3] 张 鑫, 黄 勇, 阳鹏宇, 等. 等离子体激励器诱导射流的湍流特性研究[J]. 力学学报, 2018, 50(4): 74-84.
[4] 程 林, 孙 姝, 谭慧俊, 等. 直缝式等离子体合成射流激励器特性的实验研究[J]. 推进技术, 2017, 38(9): 1937-1942.
[5] 吴 云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2): 381-405.
[6] 魏 彪, 梁 华, 牛中国, 等. 三角翼微秒脉冲等离子体流动控制的试验研究[J]. 高电压技术, 2016, 42(3): 782-789.
[7] Sidorenko A A, Budovskiy A D, Maslov A A , et al. Plasma Control of Vortex Flow on a Delta Wing at High Angles of Attack[J]. Experiments in Fluids, 2013, 54(8): 1585-1596.
[8] Li Jiang, Yang Lei-Lei, Wang Bin, et al. Airflow Control by DBD Actuator over an MDA Airfoil[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2820-2821.
[9] Schatzman D M, Thomas F O. Turbulent Boundary-Layer Separation Control with Single Dielectric Barrier Discharge Plasma Actuators[J]. AIAA Journal, 2010, 48(8): 1620-1634.
[10] Kwak D Y, Nelson R C. Vortical Flow Control over Delta Wings with Different Sweep Back Angles Using DBD Plasma Actuators[R]. AIAA 2010-4837.
[11] 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励实验[J]. 航空动力学报, 2014, 29(10): 2331-2339.
[12] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow Separation Control by Plasma Actuator with Nanosecond Pulsed-Periodic Discharge[J]. AIAA Journal, 2009, 47(1): 168-185.
[13] Tang, Mengxiao, Wu Yun, Wang Hongyu, et al. Effects of Capacitance on a Plasma Synthetic Jet Actuator with a Conical Cavity[J]. Sensors and Actuators A: Physical, 2018, 276: 284-295.
[14] Leonov S B, Yarantsev D A. Near-Surface Electrical Discharge in Supersonic Airflow: Properties and Flow Control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181.
[15] 甘 甜. 脉冲电弧放电等离子体激励器控制激波/附面层干扰不稳定性实验研究[D]. 西安:空军工程大学, 2018.
[16] 唐孟潇. 高频阵列式脉冲电弧等离子体激励控制压缩斜坡激波/附面层干扰研究[D]. 西安:空军工程大学, 2018.
[17] Zhang Zhibo, Wu Yun, Sun Zhengzhong, et al. Experimental Research on Multichannel Discharge Circuit and Multi-Electrode Plasma Synthetic Jet Actuator[J]. Journal of Physics D: Applied Physics, 2017, 50(16).
[18] Zhang Zhibo, Wu Yun, Jia Min, et al. The Multichannel Discharge Plasma Synthetic Jet Actuator[J]. Sensors and Actuators A: Physical, 2017, 253: 112-117.
[19] 张志波. 多路放电等离子体合成射流激励器及其控制激波/附面层干扰的研究[D]. 西安:空军工程大学, 2017.
[20] 李应红, 吴 云, 梁 华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.
[21] Tang, Mengxiao, Wu Yun, Wang Hongyu, et al. Characterization of Transverse Plasma Jet and its Effects on Ramp Induced Separation[J]. Experimental Thermal and Fluid Science, 2018, 99: 584-594.
[22] 张攀峰, 刘爱兵, 王晋军. 非定常等离子激励器诱导平板边界层的流动结构[J]. 中国科学:技术科学, 2011, 41(4): 482-492.
[23] Gursul I, Wang Z, Vardaki E. Review of Flow Control Mechanisms of Leading-Edge Vortices[J]. Progress in Aerospace Sciences, 2007, 43: 246-270.
[24] Margalit S, Greenblatt D, Seifert A, et al. Delta Wing Stall and Roll Control Using Segmented Piezoelectric Fluidic Actuators[J]. Journal of Aircraft, 2005, 42(3): 698-709.
[25] Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta-Wing Flow Control Using Dielectric Barrier Discharge Actuators[J]. AIAA Journal, 2008, 46(6): 1554-1560.
[26] 赵光银, 梁 华, 李应红, 等. 纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验[J]. 航空学报, 2015, 36(7): 2125-2132.
[27] 钱翼稷. 空气动力学[M]. 北京:北京航空航天大学出版社, 2004: 116-132.
[28] 赵光银. 翼型/三角翼等离子体冲击流动控制机理研究研究[D]. 西安:空军工程大学, 2015.
[29] 梁 华. 翼型等离子体流动控制研究[D]. 西安:空军工程大学, 2008.
[30] Leonov S , Bityurin V , Savischenko N , et al. Influence of Surface Electrical Discharge on Friction of Plate in Subsonic and Transonic Airflow[R]. AIAA 2001-0640.
[31] Gan T, Wu Y, Sun Z Z, et al. Shock Wave Boundary Layer Interaction Controlled by Surface Arc Plasma Actuators[J]. Physics of Fluids, 2018, 30(5).